Lecture 9

Stability of Elastic Structures

Lecture 10

Advanced Topic in Column Buckling

Problem 9-1:

A clamped-free column is loaded at its tip by a load P . The issue here is to find the critical buckling load.

a) Suggest a simple form of the buckled of the column, satisfying kinematic boundary conditions.
b) Use the Rayleigh-Ritz quotient to find the approximate value of the buckling load.
c) Come up with another buckling shape which would give you a lower value for the buckling load.
d) Find the exact solution of the problem and show the convergence of the approximate solution to the exact solution.

Follow the example of a pin-pin column, which is presented in the notes of Lecture 9.

Problem 9-1 Solution:

a) Kinematic boundary condition, in term of shape function $\phi(x)$, for a clamped-free column is

$$
\phi(0)=\phi^{\prime}(0)=0
$$

Choose a buckling shape

$$
\begin{aligned}
& \phi(x)=x^{2} \\
& \phi^{\prime}(x)=2 x \\
& \phi^{\prime \prime}(x)=2
\end{aligned}
$$

b) Use Rayleigh-Ritz Quotient, the critical buckling load is

$$
\begin{aligned}
N_{c} & =E I \frac{\int_{0}^{l} \phi^{\prime \prime} \phi^{\prime \prime} d x}{\int_{0}^{l} \phi^{\prime} \phi^{\prime} d x} \\
& =E I \frac{\int_{0}^{l} 2 \times 2 d x}{\int_{0}^{l} 2 x \times 2 x d x} \\
& N_{c}=3 \frac{E I}{L^{2}}
\end{aligned}
$$

c) Choose a buckling shape similar to a cantilever beam

$$
\begin{gathered}
\begin{array}{l}
\phi(x)=x^{3}-3 L x^{2} \\
\phi^{\prime}(x)=3 x^{2}-6 L x \\
\phi^{\prime \prime}(x)=6 x-6 L \\
N_{c}= \\
=E I \frac{\int_{0}^{l} \phi^{\prime \prime} \phi^{\prime \prime} d x}{\int_{0}^{l} \phi^{\prime} \phi^{\prime} d x} \\
=E I \frac{\int_{0}^{l}(6 x-6 L)^{2} d x}{\int_{0}^{l}\left(3 x^{2}-6 L x\right)^{2} d x} \\
=E I \frac{12 L^{3}}{24 L^{5} / 5} \\
\\
N_{c}=2.5 \frac{E I}{L^{2}}
\end{array}
\end{gathered}
$$

Compare to the result in b), $N_{c}=3 \frac{E I}{L^{2}}$, this buckling shape givers a lower value

d) Choose buckling shape

$$
\phi(x)=1-\cos \frac{\pi}{2 L} x
$$

$$
\begin{gathered}
\phi^{\prime}(x)=\frac{\pi}{2 L} \sin \frac{\pi}{2 L} x \\
\phi^{\prime \prime}(x)=\left(\frac{\pi}{2 L}\right)^{2} \cos \frac{\pi}{2 L} x \\
N_{c}=E I \frac{\int_{0}^{l} \phi^{\prime \prime} \phi^{\prime \prime} d x}{\int_{0}^{l} \phi^{\prime} \phi^{\prime} d x} \\
=E I \frac{\int_{0}^{l}\left[\left(\frac{\pi}{2 L}\right)^{2} \cos \frac{\pi}{2 L} x\right]^{2} d x}{\int_{0}^{l}\left(\frac{\pi}{2 L} \sin \frac{\pi}{2 L} x\right)^{2} d x} \\
=E I \frac{\pi^{2}}{4 L^{2}} \\
N_{c}=2.47 \frac{E I}{L^{2}}
\end{gathered}
$$

Check for local equilibrium of the solution

$$
E I w^{I V}+N_{c} w^{\prime \prime}=A\left[-E I\left(\frac{\pi}{2 L}\right)^{4} \cos \frac{\pi}{2 L} x+E I \frac{\pi^{2}}{4 L^{2}}\left(\frac{\pi}{2 L}\right)^{2} \cos \frac{\pi}{2 L} x\right]=0
$$

This is the exact solution to the clamped-free buckling

Problem 9-2:

Consider a clamped-free column loaded by a compressive force at the free end.

a) Determine the critical slenderness ratio $\beta_{c r i t}$ distinguishing between the elastic and plastic buckling response. What is the buckling stress and strain?
b) Calculate the critical plastic buckling load for $\beta=0.5 \beta_{\text {crit }}$ and the corresponding stress and strain.
c) Calculate the critical elastic buckling load for $\beta=2 \beta_{c r i t}$ and the corresponding stress and strain.
d) Compare all three results.

Problem 9-2 Solution:

a) First, find the bending load:

For Clamed-Free column

$$
P_{c r}=\frac{\pi^{2} E I}{(2 L)^{2}}=\frac{\pi^{2} E I}{4 L^{2}}
$$

Second, find the buckling stress and strain

$$
\left.\sigma_{c r}\right|_{b u c k l i n g}=\frac{P_{c r}}{A}=\frac{\pi^{2} E I}{4 A L^{2}}
$$

Recall that

$$
r=\sqrt{\frac{I}{A}} \Rightarrow r^{2}=\frac{I}{A}
$$

Then

$$
\left.\sigma_{c r}\right|_{\text {buckling }}=\frac{\pi^{2} E r^{2}}{4 L^{2}}=\frac{\pi^{2} E}{4\left(L^{2} / r^{2}\right)}
$$

Recall that

$$
\begin{gathered}
\beta=L^{2} / r^{2} \\
\sigma_{c r}=\frac{\pi^{2} E r^{2}}{4 L^{2}}=\frac{\pi^{2} E}{4 \beta^{2}} \\
\varepsilon_{c r}=\frac{\sigma_{c r}}{E}=\frac{\pi^{2}}{4 \beta^{2}}
\end{gathered}
$$

Third, find when $\sigma_{\text {buckling }}=\sigma_{\text {yield }}$
$\beta=\beta_{c r i t}$ when $\sigma_{c r}=\sigma_{y}$, which is

$$
\begin{gathered}
\frac{\pi^{2} E}{4 \beta_{c r i t}{ }^{2}}=\sigma_{y} \\
\frac{\pi^{2} E}{4 \sigma_{y}}=\beta_{c r i t}{ }^{2} \\
\frac{\pi}{2} \sqrt{\frac{E}{\sigma_{y}}}=\beta_{c r i t}
\end{gathered}
$$

b) $\beta=0.5 \beta_{\text {crit }}$, the column yields + hits plastic buckling

$$
\sigma_{c r_{p l}}=\frac{\pi^{2} E_{t}}{4\left(\frac{1}{2} \beta_{c r i t}\right)^{2}}=\frac{\pi^{2} E_{t}}{\beta_{c r i t}{ }^{2}} \quad \text { (From Lecture Note, equation 9.73) }
$$

$$
\varepsilon_{p l}=n \frac{\pi^{2}}{4\left(\frac{1}{2} \beta_{c r i t}\right)^{2}}=n \frac{\pi^{2}}{\beta_{c r i t}{ }^{2}}
$$

c) $\beta=2 \beta_{\text {crit }}$, the column will buckle elastically

$$
\begin{aligned}
\sigma_{c r}=\frac{\pi^{2} E}{4 \beta^{2}} & =\frac{\pi^{2} E}{4\left(2 \beta_{c r i t}\right)^{2}}=\frac{\pi^{2} E}{16 \beta_{c r i t}^{2}} \\
\varepsilon_{c r} & =\frac{\sigma_{c r}}{E}=\frac{\pi^{2}}{16 \beta_{c r i t}^{2}}
\end{aligned}
$$

d) Compare the three results

	σ	ε
Yield	σ_{y}	ε_{y}
Elastic Buckling	$0.67 \frac{E}{\beta_{\text {crit }}{ }^{2}}=0.07 \sigma_{y}$	$\frac{0.67}{\beta_{\text {crit }}{ }^{2}}$
Plastic Buckling	$\frac{19.74}{4} \frac{E}{\beta_{\text {crit }}{ }^{2}}=0.5 \sigma_{y}$	$\frac{7.9}{4 \beta_{\text {crit }}{ }^{2}}=\frac{1.98}{\beta_{\text {crit }}{ }^{2}}$

To simply our comparison, assume $n=0.2, E_{t}=0.5 E \quad\left({ }^{*}\right)$ and recall $\pi \sqrt{\frac{E}{\sigma_{y}}}=\beta_{\text {crit }}$
(*)In order to compare plastic buckling to elastic+yield, we need to make future assumption about the material properties.

Problem 9-3: Consider the pin-pin column.
a) Suggest a polynomial buckling shape function $\phi(x)$ to improve the approximate solution derived in lecture note. Note that the one used in class was the parabolic shape.
b) Determine the accuracy relative to the exact solution.

Problem 9-3 Solution:

a) The exact solution is $w=\sin \left(\frac{\pi x}{L}\right)$, use the none-dimensioned value $\chi=\frac{x}{L}$, the Taylor series expansion is

$$
\sin \pi \chi=\pi \chi-\frac{(\pi \chi)^{3}}{6}+\ldots
$$

So we know the shape function must be

$$
\phi(\chi)=C_{1} \chi+C_{2} \chi^{3}+\ldots
$$

For $0 \leq x \leq L / 2$, the boundary conditions are

$$
\left\{\begin{array}{l}
\phi(0)=0 \\
\phi^{\prime}\left(\chi=\frac{1}{2}\right)=0
\end{array}\right.
$$

The first boundary condition gives

$$
\phi(0)=C_{1}(0)+C_{2}(0)
$$

this doesn't help.
The second boundary condition gives

$$
\begin{gathered}
\phi^{\prime}(\chi)=C_{1}+3 C_{2} \chi^{2}=0 \\
\phi^{\prime}\left(\chi=\frac{1}{2}\right)=C_{1}+\frac{3}{4} C_{2}=0 \\
C_{2}=-\frac{4}{3} C_{1}
\end{gathered}
$$

So we have

$$
\begin{gathered}
\phi(\chi)=C_{1} \chi+\left(-\frac{4}{3} C_{1}\right) \chi^{3} \\
\phi(\chi)=C_{1}\left(\chi-\frac{4}{3} \chi^{3}\right)
\end{gathered}
$$

We can us the Rayleigh-Ritz Quotient

$$
\begin{gathered}
N_{c r}=\frac{E I \int\left(\phi^{\prime \prime}\right)^{2} d x}{\int\left(\phi^{\prime}\right)^{2} d x} \\
\phi^{\prime}(x)=C_{1}\left(1-4 \chi^{2}\right) d \chi / d x \\
\left(\phi^{\prime}(\chi)\right)^{2}=C_{1}^{2}\left(1-8 \chi^{2}+16 \chi^{4}\right)(d \chi / d x)^{2} \\
\phi^{\prime \prime}(x)=-8 C_{1} \chi(d \chi / d x)^{2} \\
\left(\phi^{\prime \prime}(\chi)\right)^{2}=64 C_{1}^{2} \chi^{2}(d \chi / d x)^{4}
\end{gathered}
$$

where $d \chi / d x=\frac{d(x / l)}{d x}=\frac{1}{l}$

Since we have considered the shape function for $0 \leq x \leq L / 2$, we must adjust the limits on the integral

$$
\begin{aligned}
N_{c r} & =\frac{E I \int\left(\phi^{\prime \prime}\right)^{2} d x}{\int\left(\phi^{\prime}\right)^{2} d x} \\
& =E I \frac{2 \int_{0}^{\frac{l}{2}} 64 C_{1}^{2} \chi^{2}(d \chi / d x)^{4} d x}{2 \int_{0}^{\frac{l}{2}} C_{1}^{2}\left(1-8 \chi^{2}+16 \chi^{4}\right)(d \chi / d x)^{2} d x} \\
& =E I \frac{\int_{0}^{\frac{l}{2}} 64(x / l)^{2}(1 / l)^{4} d x}{\int_{0}^{\frac{l}{2}}\left(1-8(x / l)^{2}+16(x / l)^{4}\right)(1 / l)^{2} d x} \\
& =\ldots(\text { after lengthly algebra }) \\
& =10 \frac{E I}{L^{2}}
\end{aligned}
$$

$$
N_{c r}=10 \frac{E I}{L^{2}}
$$

b)

The result are compared with the polynomial used in class and the exact solution

	Exact Solution $C \sin (\pi \chi)$	Parabolic $C_{1} \chi+C_{2} \chi^{2}$	Cubic $C_{1} \chi+C_{2} \chi^{3}$
Coefficient	$\pi^{2}=9.87$	12	10
Error	N/A	21.5%	1.3%

Notice how we significantly reduce the error by including a higher order term.

Problem 9-4:

Present a step-by-step derivation of the buckling solution of the pin-clamped column from the local equilibrium equation.

Problem 9-4 Solution:

Boundary condition for this problem

$$
\begin{aligned}
& w(0)=w(L)=0 \\
& w^{\prime}(0)=0 \\
& E I w^{\prime \prime}(L)=0
\end{aligned}
$$

Start with $4^{\text {th }}$ order ODE

$$
\begin{aligned}
& E I w^{I V}+P w^{\prime \prime}=0 \\
& w^{I V}+\frac{P}{E I} w^{\prime \prime}=0
\end{aligned}
$$

We have an eigenvalue problem

$$
\begin{gathered}
\lambda^{4}+\frac{P}{E I} \lambda^{2}=0 \\
\lambda^{2}\left(\lambda^{2}+\frac{P}{E I}\right)=0 \\
\lambda_{1}=\lambda_{2}=0, \lambda_{3}=\lambda_{4}= \pm i \sqrt{\frac{P}{E I}}
\end{gathered}
$$

Define $\sqrt{\frac{P}{E I}}=K \Rightarrow \lambda_{3}=\lambda_{4}= \pm i K$

$$
w=C_{1}+C_{2} x+C_{3} \sin K x+C_{4} \cos K x
$$

Use the boundary conditions to solve for constants C_{1}, C_{2}, C_{3} and C_{4}

$$
w(0)=0
$$

$$
\begin{gathered}
w(0)=0=C_{1}+C_{4} \\
C_{1}=-C_{4}
\end{gathered}
$$

$w^{\prime}(0)=0$

$$
\begin{gathered}
w^{\prime}(x)=C_{2}+K C_{3} \cos K x-K C_{4} \sin K x \\
w^{\prime}(0)=C_{2}+K C_{3}=0 \\
C_{2}=-K C_{3}
\end{gathered}
$$

$w(L)=0$

$$
w(L)=C_{1}+C_{2} L+C_{3} \sin K L+C_{4} \cos K L=0
$$

Substitute C_{1}, C_{2} into the above expression

$$
C_{3}(-K L+\sin K L)+C_{4}(-1+\cos K L)=0
$$

$w^{\prime \prime}(L)=0$

$$
\begin{aligned}
& w^{\prime \prime}(x)=-K^{2} C_{3} \sin K x-K^{2} C_{4} \cos K x \\
& w^{\prime \prime}(L)=-K^{2} C_{3} \sin K L-K^{2} C_{4} \cos K L=0 \\
& {\left[\begin{array}{cc}
-K L+\sin K L & -1+\cos K L \\
-K^{2} \sin K L & K^{2} \cos K L
\end{array}\right]\left\{\begin{array}{c}
C_{3} \\
C_{4}
\end{array}\right\}=0}
\end{aligned}
$$

$\operatorname{det}[]=0$

$$
\begin{gathered}
K^{2} \cos K L(-K L+\sin K L)-\left(-K^{2} \sin K L\right)(-1+\cos K L)=0 \\
K L \cos K L-\sin K L=0 \\
K L=\frac{\sin K L}{\cos K L}=\tan K L
\end{gathered}
$$

So the equation to solve in order to find $P_{c r}$ is

$$
\tan K L-K L=0
$$

The smallest roots are $K L=0$ and $K L=4.49$,
we choose $K L=4.49$

$$
\begin{gathered}
P_{c r}^{\frac{P}{E I}} L=4.49 \\
\frac{20.16}{L^{2}} E I \approx \frac{\pi^{2} E I}{(0.7 L)^{2}} \\
P_{c r}=\frac{\pi^{2} E I}{(0.7 L)^{2}}
\end{gathered}
$$

Problem 9-5:

a) Derive the solution for an imperfect clamped-free column (like that considered in problem 9-1, following a similar derivation given in the notes for a pin-pin column in the notes.
b) Find the ratio of current deflection amplitude to the amplitude of the initial imperfection such that the resulting load is 80% of the theoretical buckling load of a perfect column.

Problem 9-5 Solution:

a)
$\bar{w}(x)$: shape of initial imperfection
$w(x)$: actual buckled shape
$\bar{w}_{o}(x)$: amplitude of initial imperfection
w_{o} : end amplitude of actual imperfection

Moment equilibrium of imperfect column

$$
-E I(w-\bar{w}) "+P\left(w-w_{o}\right)=0
$$

Perfect column

$$
\bar{w}(x)=0
$$

Assume that the initial imperfection is in the same shape as the buckling shaper

$$
\begin{aligned}
& w(x)=w_{o}(1-\cos \lambda x) \\
& \bar{w}(x)=\overline{w_{o}}(1-\cos \lambda x)
\end{aligned}
$$

From boundary condition

$$
w(L)=0
$$

$$
\begin{aligned}
& w_{o} \lambda^{2} \cos \lambda L=0 \\
& \lambda L=\left(\frac{2 n+1}{2}\right) \pi
\end{aligned}
$$

From moment equilibrium of imperfect column

$$
\begin{gathered}
-E I \lambda^{2}\left(w-\bar{w}_{o}\right) \cos \lambda x+P w_{o}[1-(1-\cos \lambda x)]=0 \\
P w_{o}=E I \lambda^{2}\left(w-\bar{w}_{o}\right)
\end{gathered}
$$

Perfect column

$$
\begin{gathered}
\bar{w}_{o}=0 \\
P=E I \lambda^{2}=\frac{\pi^{2} E I}{4 L^{2}}
\end{gathered}
$$

Imperfect column

$$
\begin{gathered}
P w_{o}=P_{c r}\left(w_{o}-\bar{w}_{o}\right) \\
P=\frac{\pi^{2} E I}{4 L^{2}}\left(1-\frac{\bar{w}_{o}}{w_{o}}\right) \\
\frac{P}{P_{c r}}=1-\frac{\bar{w}_{o}}{w_{o}}
\end{gathered}
$$

b) When $\frac{P}{P_{c r}}=0.8$

$$
\begin{gathered}
\frac{\bar{w}_{o}}{w_{o}}=1-\frac{P}{P_{c r}}=0.2 \\
\frac{w_{o}}{\bar{w}_{o}}=5
\end{gathered}
$$

Problem 9-6:

The pin-pin elastic column of length L (shown below) is an "I" section can buckle in either plane.
a) Determine the buckling load in terms of L, b_{1}, b_{2}, t and E. Assume that $t \ll b$.
b) What should the ratio of b_{1} / b_{2} be in order for the probability of buckling in either of the buckling planes to be the same?

Bonus: What could happen for very large width to thickness ratio?

Problem 9-6 Solution:

a) The moment s of inertia for an "I" shape cross-section is

If $I_{y y}<I_{z z}$, the column will buckle in x-z plane

$$
P_{c r}=\frac{\pi^{2} E I_{y y}}{l^{2}}=\frac{\pi^{2} E}{12 l^{2}} t b_{2}^{2}\left(b_{2}+6 b_{1}\right)
$$

If $I_{y y}<I_{z z}$, the column will buckle in $\mathrm{x}-\mathrm{y}$ plane

$$
P_{c r}=\frac{\pi^{2} E I_{z z}}{l^{2}}=\frac{\pi^{2} E}{6 l^{2}} t b_{1}^{3}
$$

b) For the probability of buckling in either of the planes to be the same, we want

$$
\begin{gathered}
I_{y y}=I_{z z} \\
\frac{1}{12} t b_{2}{ }^{2}\left(b_{2}+6 b_{1}\right)=\frac{1}{6} t b_{1}^{3} \\
\Rightarrow\left(\frac{b_{1}}{b_{2}}\right)^{3}-3 \frac{b_{1}}{b_{2}}-\frac{1}{2}=0
\end{gathered}
$$

The only physical solution is

$$
\frac{b_{1}}{b_{2}}=1.81
$$

c) If $b_{1} \gg t, b_{2} \gg t$, then local plate buckling my develop.

MIT OpenCourseWare
http://ocw.mit.edu
2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

