Lecture 6

Moderately Large Deflection Theory of Beams

Problem 6-1:

Part A: The department of Highways and Public Works of the state of California is in the process of improving the design of bridge overpasses to meet earthquake safety criteria. As a highly paid consultant to the project, you were asked to evaluate its soundness. You rush back to your lecture notes, and you model the overpass as a simply supported beam of span L with an overhang $\Delta=0.01 L$. Assume that the distributed load is a sinusoidal function.

a) Calculate the maximum allowable midspan deflection $\left(w_{o}\right)_{\text {critical }}$ under which the beam will slide off its support.

Part B: Assume that the above design with an external axial force $N=0$ and $\Delta=0.01 L$ has a safety factor of one. The design of earthquake resistant structures requires a safety factor of five, meaning that $\left(w_{o}\right)_{\text {critical }}$ must be increased by a factor of five without the bridge collapsing. Two possible design modifications were proposed. In the first one, the overhang is simply increased to $\Delta_{\text {new }}$. In the second design, a tensile force N is applied to the bridge to increase its transverse stiffness and thus reduce the central deflection and the resulting motion of the support.
b) For the first proposed modification, what length $\Delta_{\text {new }}$ of the overhang will meet the requirement of a safety factor of five? Give your result in terms of the original Δ and other parameters if needed.
c) For the second design, what is the magnitude of the dimensionless tensile force $N / E A$ that will give a safety factor equal to five?
d) Which design is better? Can you think of a third alternative design solution?

Problem 6-1 Solution:

Recall:

$$
\frac{N L}{E A}=-\Delta+\int_{0}^{L} \frac{1}{2}\left(\frac{d w}{d x}\right)^{2} d x
$$

(a) Calculate the max deflection $\left(w_{o}\right)_{\text {artical }}$ at $L / 2$ under which the beam will slide off its support

Assume $\quad N=0$

$$
\begin{equation*}
\Delta=\int_{0}^{L} \frac{1}{2}\left(\frac{d w}{d x}\right)^{2} d x \tag{1}
\end{equation*}
$$

Since the applied load is a sin function, we can assume the deflected shape will also be a sine function

$$
\begin{gathered}
w(x)=w_{o} \sin \left(\frac{\pi x}{L}\right) \\
w^{\prime}(x)=w_{o}\left(\frac{\pi}{L}\right) \cos \left(\frac{\pi x}{L}\right) \\
\left(w^{\prime}(x)\right)^{2}=w_{o}^{2}\left(\frac{\pi}{L}\right)^{2} \cos ^{2}\left(\frac{\pi x}{L}\right)
\end{gathered}
$$

Substitute the above equation into equation (1), we have

$$
\begin{aligned}
& \Delta=\int_{0}^{L} \frac{1}{2} w_{o}^{2}\left(\frac{\pi}{L}\right)^{2} \cos ^{2}\left(\frac{\pi x}{L}\right) d x \\
&=\frac{1}{2} w_{o}^{2}\left(\frac{\pi}{L}\right)^{2}\left[\frac{x}{2}+\left.\frac{\sin (\pi x / L)}{4 \pi / L}\right|_{0} ^{L}\right. \\
&=\frac{1}{2} w_{o}^{2}\left(\frac{\pi}{L}\right)^{2}\left[\frac{L}{2}+0\right] \\
&=\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2} \\
& \Delta=\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2}
\end{aligned}
$$

Thus, the maximum allowable midspan deflection is

$$
\begin{aligned}
& w_{o}{ }^{2}=\frac{4 L \Delta}{\pi^{2}} \\
& w_{o}=\frac{2}{\pi} \sqrt{L \Delta}
\end{aligned}
$$

We're given $\Delta=0.01 L$

$$
\begin{gathered}
w_{o}=\frac{2}{\pi} \sqrt{\frac{L^{2}}{100}}=\frac{L}{5 \pi} \\
w_{o}=\frac{L}{5 \pi} \\
w_{o}=\frac{L}{5 \pi}
\end{gathered}
$$

(b) Case 1: increase Δ to meet safety factor of 5

$$
\begin{gathered}
5 w_{o}=\frac{2}{\pi} \sqrt{L \Delta_{\text {new }}} \\
\Delta_{\text {new }}=\frac{1}{L}\left(\frac{5 w_{o} \pi}{2}\right)^{2} \\
\Delta_{\text {new }}=\frac{1}{L}\left(\frac{5 w_{o} \pi}{2}\right)^{2}=25\left[\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2}\right]
\end{gathered}
$$

Recall: $\Delta=\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2}$

$$
\Delta_{\text {new }}=25 \Delta
$$

(c) Case 2: apply a tensile force N , so now $N \neq 0$

$$
\begin{aligned}
& \frac{N L}{E A}=-\Delta+\int_{0}^{L} \frac{1}{2}\left(\frac{d w}{d x}\right)^{2} d x \\
& \frac{N L}{E A}=-\Delta+\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2}
\end{aligned}
$$

We want to calculate N that will give us the equivalent effect of applying a safety factor of 5 , in which case

$$
\begin{gathered}
\frac{1}{L}\left(\frac{w_{o} \pi}{2}\right)^{2}=25 \Delta \\
\frac{N L}{E A}=-\Delta+25 \Delta=24 \Delta
\end{gathered}
$$

In the case of $\Delta=L / 100$

$$
\frac{N}{E A}=\frac{24}{L} \frac{L}{100}=0.24
$$

(d) Which design is better?

It is difficult to say which design is better. Each design has its advantage and disadvantages. For case 1 , we will have a long overhang which may not be aesthetically pleasing. For case 2 , it may be difficult to apply constantly a tensile force.

Other options include a stiffer simply supported beam, or add cables to suspend the bridge.

Problem 6-2:

A long span aerial tramway steel cable of length $\mathrm{L}=1 \mathrm{~km}$ is loaded by a hurricane wind with intensity $\mathrm{q}(\mathrm{x})$ sinusoidally distributed between the end stations. The cable deflects by $\mathrm{wo}=5 \mathrm{~m}$.

$$
\begin{aligned}
& E=2.1 \times 10^{5} \mathrm{MPa} \\
& \sigma_{y}=300 \mathrm{MPa} \\
& D=60 \mathrm{~mm}
\end{aligned}
$$

Cross-section
of cable

$$
q(x)=q_{0} \sin \left(\frac{\pi x}{L}\right)
$$

a) Calculate the resulting load intensity qo
b) Calculate the tension in the cable N .
c) Calculate the tensile stress.
d) Compare (c) with the yield stress, and determine the safety factor.

Problem 6-2 Solution:

Using the equation of equilibrium

$$
E I w^{\mathrm{IV}}-N w^{\prime \prime}=q
$$

However, a cable has no bending stiffness, so our equation becomes:

$$
\begin{gathered}
-N w^{\prime \prime}=q \\
w^{\prime \prime}=-\frac{q}{N}=-\frac{1}{N} q_{o} \sin \left(\frac{\pi x}{L}\right)
\end{gathered}
$$

Integrate twice

$$
\begin{gathered}
w^{\prime}=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right) \cos \left(\frac{\pi x}{L}\right)+C_{1} \\
w=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)+C_{1} x+C_{2}
\end{gathered}
$$

Plug in the boundary conditions to solve for the constants

$$
\begin{gathered}
\begin{cases}w(0)=0 & w(0)=C_{2}=0 \\
w(L)=0 & w(L)=0+C_{1} L+C_{2}=0 \Rightarrow C_{1}=0 \\
w(x)=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)\end{cases}
\end{gathered}
$$

a) Calculate the load intensity

The cable deflects by $w_{o}=5 m$ at the middle point $x=L / 2$

$$
\begin{gathered}
w\left(\frac{L}{2}\right)=w_{o}=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi}{L} \frac{L}{2}\right)=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \\
q_{o}=N w_{o}\left(\frac{\pi}{L}\right)^{2}
\end{gathered}
$$

b) Calculate the tension on the cable(N)

$$
\begin{aligned}
& \text { Using } \begin{aligned}
& \frac{N}{E A}=\frac{1}{L} \int_{0}^{L} \frac{1}{2}\left(\frac{d w}{d x}\right)^{2} d x \text { and } w(x)=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right) \\
& w^{\prime}(x)=\frac{q_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \frac{\pi}{L} \cos \left(\frac{\pi x}{L}\right) \\
&\left(w^{\prime}(x)\right)^{2}=\left(\frac{q_{o} L}{N \pi}\right)^{2} \cos ^{2}\left(\frac{\pi x}{L}\right) \\
& N=\frac{E A}{2 L} \int_{0}^{L}\left(\frac{q_{o} L}{N \pi}\right)^{2} \cos ^{2}\left(\frac{\pi x}{L}\right) d x \\
&=\frac{E A L}{2}\left(\frac{q_{o}}{N \pi}\right)^{2}\left[\frac{x}{2}+\frac{\sin (2 x \pi / L)}{4 \pi / L}\right]_{0}^{L} \\
&=\frac{E A L}{2}\left(\frac{q_{o}}{N \pi}\right)^{2}\left(\frac{L}{2}+0\right) \\
& N^{3}=\frac{E A}{4}\left(\frac{q_{o} L}{\pi}\right)^{2}
\end{aligned}
\end{aligned}
$$

$$
N=\left(E A\left(\frac{q_{0} L}{2 \pi}\right)^{2}\right)^{1 / 3}
$$

Given $w_{o}=5 m$, then $q_{o}=N w_{o}\left(\frac{\pi}{L}\right)^{2}=5 N\left(\frac{\pi}{L}\right)^{2}$

$$
\begin{aligned}
& N^{3}=\frac{E A}{4}\left(\frac{q_{0} L}{\pi}\right)^{2}=\frac{E A}{4}\left(\frac{5 N\left(\frac{\pi}{L}\right)^{2} L}{\pi}\right)^{2}=\frac{25 E A}{4}\left(\frac{L}{\pi}\right)^{2} N^{2}\left(\frac{\pi}{L}\right)^{4} \\
& N=\frac{25 E A}{4}\left(\frac{\pi}{L}\right)^{2}=\frac{25}{4}\left(2.1 \times 10^{5}\right) \times 10^{6}\left[\frac{\pi}{4}\left(60 \times 10^{-3}\right)^{2}\right]\left(\frac{\pi}{1 \times 10^{3}}\right)^{2} \\
& N=36626 \mathrm{~N}
\end{aligned}
$$

c) Calculate the tension stress on the cable

$$
\begin{aligned}
& \sigma=\frac{N}{A}=\frac{36626}{\frac{\pi}{4}\left(60 \times 10^{-3}\right)^{2}}=12.95 \mathrm{MPa} \\
& \sigma=12.95 \mathrm{MPa}
\end{aligned}
$$

d) Compare with the yield stress and determine the safety factor

$$
\text { safety factor }=\frac{\text { yield stress }}{\text { working stress }}=\frac{300}{12.95}
$$

safety factor $=23.17$

Problem 6-3:

Plot the dimensionless deflections $\left(\mathrm{w}_{\mathrm{o}} / \mathrm{L}\right)$ versus the dimensionless line load for both bending and membrane (cable) solutions over a slender beam. At what dimensionless deflections will the bending and membrane solutions be equal, assuming a length to thickness ratio equal to 10 ?

Problem 6-3 Solution:

Recall bending and membrane solutions:

Pure Bending
$w(x)=\frac{P_{o}}{E I\left(\frac{\pi}{L}\right)^{4}} \sin \frac{\pi x}{L}$
at $\quad x=\frac{L}{2}$
$w\left(\frac{L}{2}\right)=w_{o}=\frac{P_{o}}{E I\left(\frac{\pi}{L}\right)^{4}}$
$w_{o}=\frac{P_{o}}{E I}\left(\frac{L}{\pi}\right)^{4}$
where $I=\frac{h^{4}}{12}$
$w_{o}=\frac{P_{o}}{E \frac{h^{4}}{12}}\left(\frac{L}{\pi}\right)^{4}=L\left(\frac{P_{o} L}{E h^{2}}\right)\left(\frac{12 L^{2}}{\pi^{4} h^{2}}\right)$
$\frac{w_{o}}{L}=\left(\frac{P_{o} L}{E h^{2}}\right)\left(\frac{12 L^{2}}{\pi^{4} h^{2}}\right)$

Membrane

$w(x)=\frac{P_{o}}{N\left(\frac{\pi}{L}\right)^{2}} \sin \frac{\pi x}{L}$
at $\quad x=\frac{L}{2}$

$$
\begin{align*}
& w\left(\frac{L}{2}\right)=w_{o}=\frac{P_{o}}{N\left(\frac{\pi}{L}\right)^{2}} \\
& w_{o}=\frac{P_{o}}{N}\left(\frac{L}{\pi}\right)^{2} \\
& \text { where } N=\left(E A\left(\frac{q_{o} L}{2 \pi}\right)^{2}\right)^{1 / 3} \tag{Problem6-2}
\end{align*}
$$

$$
\text { so } N=\left(E h^{2}\left(\frac{q_{0} L}{2 \pi}\right)^{2}\right)^{1 / 3}
$$

$$
w_{o}=\frac{P_{o}}{N}\left(\frac{L}{\pi}\right)^{2}=\frac{P_{o}}{\left(E h^{2}\left(\frac{q_{o} L}{2 \pi}\right)^{2}\right)^{1 / 3}}\left(\frac{L}{\pi}\right)^{2}
$$

$$
=L\left(\frac{P_{o} L}{\pi^{2}}\right)\left(\frac{1}{E}\left(\frac{2 \pi}{q_{o} L h}\right)^{2}\right)^{1 / 3}
$$

where $q_{o}=P_{o}$
rearrange the above expression
$\frac{w_{o}}{L}=\left(\frac{P_{o} L}{E h^{2}}\right)^{1 / 3}\left(\frac{4}{\pi^{4}}\right)^{1 / 3}$

Let's call $\frac{w_{o}}{L}=y, \frac{P_{o} L}{E h^{2}}=x$
We want to plot
Bending $y=\left(\frac{12 L^{2}}{\pi^{4} h^{2}}\right) x$
Membrane $y=\left(\frac{4}{\pi^{4}}\right)^{1 / 3} x^{1 / 3}$
Use a length to thickness ratio equal to $10: \frac{L}{h}=10$

Bending $y=12.32 x$
Membrane $y=0.345 x^{1 / 3}$

At what dimensionless deflections will the bending and membrane solutions be equal?

$$
\begin{gathered}
\left.\frac{w_{o}}{L}\right|_{\text {bending }}=\left.\frac{w_{o}}{L}\right|_{\text {membrane }} \\
12.32 x=0.345 x^{1 / 3} \\
x=0.005 \\
\frac{w_{o}}{L}=12.32 \times 0.005=0.0577
\end{gathered}
$$

So at $\frac{P_{o} L}{E h^{2}}=0.005$, the bending and membrane solutions will be equal, where the dimensionless deflections $\frac{w_{o}}{L}=0.0577$

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

