Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium

Problem 3-1: Cauchy's Stress Theorem

Cauchy's stress theorem states that in a stress tensor field there is a traction vector t that linearly depends on the outward unit normal n:

$t = \sigma n$

- a. Express Cauchy's stress theorem in index form.
- b. Suppose the state of stress at a point in *x*, *y*, *z* coordinate system is given by the matrix below. Determine the normal stress σ_n and the shear stress τ on the surface defined by .

Problem 3-2: Three invariants of a stress tensor

Suppose the state of stress at a point in a x, y, z coordinate system is given by

$$\begin{bmatrix} 100 & 1 & 180 \\ 0 & 20 & 0 \\ 180 & 0 & 20 \end{bmatrix}$$

- a. Calculate the three invariants of this stress tensor.
- b. Determine the three principal stresses of this stress tensor.

Problem 3-4: Transformation Matrix

Suppose the state of stress at a point relative to a *x*, *y*, *z* coordinate system is given by:

$$\begin{bmatrix} 15 & -10 \\ -10 & -5 \end{bmatrix}$$

Try to find a new coordinate system (x', y') that corresponds to the principal directions of the stress tensor.

- a. Find the principal stresses.
- b. Determine the transformation matrix **[4]**.
- c. Verify $[\sigma] = [L]^T [\sigma] [L]$.

Problem 3-5: Beam Equilibrium

Derive the equation of force and moment equilibrium of a beam using the equilibrium of an infinitesimal beam element of the length dx.

Problem 3-6: Moderately large deflections in beams

Explain which of the three equilibrium equations below is affected by the finite rotations in the theory of the moderately large deflections of beam.

- 1. Moment equilibrium
- 2. Vertical force equilibrium
- 3. Axial force equilibrium

Problem 3-7:

At full draw, and archer applies a pull of 150N to the bowstring of the bow shown in the figure. Determine the bending moment at the midpoint of the bow.

Problem 3-8:

A curved bar ABC is subjected to loads in the form of two equal and opposite force P, as shown in the figure. The axis of the bar forms a semicircle of radius r.

Determine the axial force N, shear force V, and bending moment M acting at a cross section defined by the angle θ

Problem 3-9:

The centrifuge shown in the figure rotates in a horizontal plane (the xy plane) on a smooth surface about the z axis (which is vertical) with an angular acceleration α . Each of the two arms has weight w per unit length and supports a weight W = 2.5wL at its end.

Derive formulas for the maximum shear force and maximum bending moment in the arms, assuming b = L/9 and c = L/10

Problem 3-10:

A simple beam AB supports two connective loads P and 2P that are distance d apart (see figure). The wheels may be placed at any distance x from the left support of the beam.

- (a) Determine the distance x that will produce maximum shear force in the beam, and also determine the maximum shear force V_{max}
- (b) Determine the distance that will produce the maximum bending moment, and also draw the corresponding bending moment diagram. (Assume P=10kN, d=2.4m, and L=12m)

2.080J / 1.573J Structural Mechanics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.