Lecture 2
The Concept of Strain

Problem 2-1: A thin- walled steel pipe of length 60 cm , diameter 6 cm , and wall thickness 0.12 cm is stretched 0.01 cm axially, expanded 0.001 cm in diameter, and twisted through 1°. Determine the strain components of the pipe. Note that the shell with a diameter to thickness ratio of 50 is predominately in the membrane state. For plane stress there are only 3 components of the strain tensor.

Problem 2-1 Solution:

(1) AXIAL

Evaluate deformation components at the end cross-section

$$
\begin{aligned}
& u_{r}{ }^{\circ}=0.01 / 2 \mathrm{~cm}=0.0005 \mathrm{~cm} \\
& u_{\theta}{ }^{\circ}=R \cdot \Delta \theta=3 \cdot\left(1^{\circ} \cdot \frac{\pi}{180^{\circ}}\right) \mathrm{cm}=0.0523 \mathrm{~cm} \\
& u_{z}{ }^{\mathrm{o}}=0.01 \mathrm{~cm}
\end{aligned}
$$

Evaluate deformation components across the whole pipe

$$
\begin{aligned}
& u_{r} \text { is constant } \\
& u_{r}=u_{r}^{\circ}=0.0005 \mathrm{~cm}
\end{aligned}
$$

$$
u_{\theta} \text { is linearly proportional to } \theta \text { and } r \text {, independent of } \theta
$$

$$
u_{\theta}=u_{\theta}(z, r)=u_{\theta}{ }^{\circ} \frac{z}{L} \frac{r}{R}
$$

$$
u_{z} \text { is linearly proportional to } \mathrm{z} \text {, independent of } \mathrm{r} \text { and } \theta
$$

$$
u_{z}=u_{z}(z)=u_{z}^{\circ} \frac{z}{L}
$$

Substitute the above equations of u_{r}, u_{θ} and u_{z} into the expression of six components of the strain tensor in cylindrical coordinate system, we have

$$
\begin{aligned}
& \varepsilon_{r r}=\frac{\partial u_{r}}{\partial r}=\frac{\partial u_{r}{ }^{\circ}}{\partial r}=0 \\
& \varepsilon_{\theta \theta}=\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}=\frac{u_{r}{ }^{\circ}}{r}+\frac{1}{r} \cdot 0=\frac{0.0005}{6 / 2}=1.67 \times 10^{-4} \\
& \varepsilon_{z z}=\frac{\partial u_{z}}{\partial z}=\frac{u_{z}{ }^{\circ}}{L}=\frac{0.01}{60}=1.67 \times 10^{-4} \\
& \varepsilon_{r \theta}=\frac{1}{2}\left(\frac{\partial u_{r}}{\partial \theta} \frac{1}{r}+\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right)=\frac{1}{2}\left(0+\frac{u_{\theta}{ }^{\circ} z}{L R}-\frac{u_{\theta}{ }^{\circ} z}{L R}\right)=0 \\
& \varepsilon_{\theta z}=\frac{1}{2}\left(\frac{\partial u_{z}}{r \partial \theta}+\frac{\partial u_{\theta}}{\partial z}\right)=\frac{1}{2}\left(0+\frac{u_{\theta}{ }^{\circ} r}{L R}\right) \approx \frac{1}{2} \frac{u_{\theta}{ }^{\circ} R}{L R}=\frac{1}{2} \frac{0.0523}{60}=4.36 \times 10^{-4} \\
& \varepsilon_{z r}=\frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)=\frac{1}{2}\left(\frac{\partial u_{r}{ }^{\circ}}{\partial z}+\frac{\partial u_{z}(z)}{\partial r}\right)=0 \\
& \begin{array}{l}
\varepsilon_{r r}=\varepsilon_{r \theta}=\varepsilon_{z r}=0 \\
\varepsilon_{z z}=1.67 \times 10^{-4} \\
\varepsilon_{\theta \theta}=1.67 \times 10^{-4} \\
\varepsilon_{z \theta}=4.36 \times 10^{-4}
\end{array}
\end{aligned}
$$

Summary

Problem 2-2: Derive an expression for the change in volume of a unit volume element subjected to an arbitrary small strain tensor.

Problem 2-2 Solution:

A unit volume has sides of unit length

$$
\text { Unit Volume }=1 \times 1 \times 1=1[\text { length }]^{3}
$$

Strain is defined by

$$
\varepsilon=\frac{\Delta}{L}
$$

If each side is deformed by δ, then the new length of each side is $1+\delta$

$$
\begin{aligned}
& \varepsilon=\frac{\delta}{L} \\
& \delta=L \varepsilon=1 \times \varepsilon
\end{aligned}
$$

Volume after deformation is:

$$
\begin{aligned}
V & =\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{2}\right) \\
& =1+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon \varepsilon_{2}+\varepsilon / \varepsilon_{2}+\varepsilon / \varepsilon_{1}+\varepsilon_{4} \varepsilon_{2} \varepsilon_{3}
\end{aligned}
$$

Because of small strain, we cancel all higher order terms
Volumetric Strain = change in volume per unit volume, the original volume of a unit volume element is 1

$$
\begin{gathered}
\varepsilon_{v}=\frac{V-V_{o}}{V_{o}}=\frac{\left(1+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)-1}{1}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} \\
\varepsilon_{v}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
\end{gathered}
$$

Problem 2-3: A unit square $O A B C$ is distorted to $O A^{\prime} B^{\prime} C^{\prime}$ in three ways, as shown in the figure below. In each case write down the displacement field $\left(u_{1}, u_{2}\right)$ of every point in the square as a function of the location of that point $\left(x_{1}, x_{2}\right)$ and the strain components $\varepsilon_{\mathrm{ij}}$.

Problem 2-3 Solution:
(a)

Only Axial deformation in this case

$$
\begin{aligned}
& u_{1}=-\varepsilon_{1} x_{1} \\
& u_{2}=\varepsilon_{2} x_{x}
\end{aligned}
$$

The strain components are

$$
\begin{gathered}
\varepsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=-\varepsilon_{1} \\
\varepsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=\varepsilon_{2} \\
\varepsilon_{12}=\varepsilon_{21}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{2}}\right)=0
\end{gathered}
$$

(b)

Only pure shear in this case

$$
\begin{aligned}
& \tan \theta=\frac{u_{1}}{x_{2}} \\
& \tan \theta=\frac{u_{2}}{x_{1}}
\end{aligned}
$$

Deformation

$$
\begin{aligned}
& u_{1}=\theta x_{2} \\
& u_{2}=\theta x_{1}
\end{aligned}
$$

Because of small angel $\theta, \tan \theta \approx \theta$
The strain components are

$$
\begin{gathered}
\varepsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0 \\
\varepsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=0 \\
\varepsilon_{12}=\varepsilon_{21}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{2}}\right)=\theta
\end{gathered}
$$

(c)

Only rigid body rotation in this case, there should be 0 strain everywhere Deformation

$$
\begin{aligned}
u_{1} & =\theta x_{2} \\
u_{2} & =-\theta x_{1}
\end{aligned}
$$

The strain components are

$$
\begin{gathered}
\varepsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=0 \\
\varepsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}=0 \\
\varepsilon_{12}=\varepsilon_{21}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{1}}{\partial x_{2}}\right)=\frac{1}{2}(\theta-\theta)=0
\end{gathered}
$$

Problem 2-4: The strain (plane strain) in a given point of a body is described by the 2×2 matrix below. Find components of the strain tensor $\varepsilon_{x^{\prime} y^{\prime}}$ in a new coordinate system rotated by the angle θ. Consider four cases $\theta=45^{\circ},-45^{\circ}, 60^{\circ}$ and -60°.

$$
\varepsilon_{x y}=\left[\begin{array}{cc}
0 & 0.05 \\
0.05 & 0
\end{array}\right]
$$

Problem 2-4 Solution:

Transformation equations for plane strain, from old coordinate system xy to new coordinate system x'y'

$$
\begin{aligned}
& \varepsilon_{x^{\prime} x^{\prime}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}+\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos (2 \theta)+\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{y^{\prime} y^{\prime}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}-\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos (2 \theta)-\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{x^{\prime} y^{\prime}}=-\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \sin (2 \theta)+\varepsilon_{x y} \cos (2 \theta)
\end{aligned}
$$

Given strain components:

$$
\begin{aligned}
& \varepsilon_{x}=\varepsilon_{y}=0 \\
& \varepsilon_{x y}=0.05
\end{aligned}
$$

Simplify the transformation equations:

$$
\begin{aligned}
& \varepsilon_{x^{\prime} x^{\prime}}=\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{y^{\prime} y^{\prime}}=-\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{x^{\prime} y^{\prime}}=\varepsilon_{x y} \cos (2 \theta)
\end{aligned}
$$

Substitute the stain components into the simplified transformation equations:
$\theta=45^{\circ}$

$$
\theta=-45^{\circ}
$$

$\varepsilon_{x^{\prime} y^{\prime}}=\left[\begin{array}{cc}0.05 & 0 \\ 0 & -0.05\end{array}\right]$
$\varepsilon_{x^{\prime} y^{\prime}}=-\left[\begin{array}{cc}0.05 & 0 \\ 0 & -0.05\end{array}\right]$
$\theta=60^{\circ}$
$\theta=-60^{\circ}$
$\varepsilon_{x^{\prime} y^{\prime}}=\left[\begin{array}{cc}0.04 & -0.025 \\ -0.025 & -0.04\end{array}\right]$
$\varepsilon_{x^{\prime} y^{\prime}}=\left[\begin{array}{cc}-0.04 & -0.025 \\ -0.025 & 0.04\end{array}\right]$

Problem 2-5: A cylindrical pipe of $160-\mathrm{mm}$ outside diameter and $10-\mathrm{mm}$ thickness, spirally welded at an angle of $\theta=40^{\circ}$ with the axial (x) direction, is subjected to an axial compressive load of $\mathrm{P}=150 \mathrm{kN}$ through the rigid end plates (see below). Determine the normal force $\sigma_{x^{\prime}}$ and shearing stresses ${ }^{\tau_{x^{\prime}}^{\prime} y^{\prime \prime}}$ acting simultaneously in the plane of the weld.

Problem 2-5 Solution:

Calculate stress in given coordinate system
Compressive force in x-direction

$$
\sigma_{x x}=-\frac{P}{A}=-\frac{150 k N}{\pi\left(80^{2}-70^{2}\right)\left(10^{-3}\right)^{2} \mathrm{~cm}^{2}}
$$

The stress components are

$$
\begin{aligned}
\sigma_{x x} & =-32 M P a \\
\sigma_{y y} & =0 \\
\sigma_{x y} & =0
\end{aligned}
$$

Transformation equations for plane strain

$$
\begin{aligned}
& \varepsilon_{x^{\prime} x^{\prime}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}+\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos (2 \theta)+\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{y^{\prime} y^{\prime}}=\frac{\varepsilon_{x x}+\varepsilon_{y y}}{2}-\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \cos (2 \theta)-\varepsilon_{x y} \sin (2 \theta) \\
& \varepsilon_{x y}=-\frac{\varepsilon_{x x}-\varepsilon_{y y}}{2} \sin (2 \theta)+\varepsilon_{x y} \cos (2 \theta)
\end{aligned}
$$

Substitute the stain components and $\theta=40^{\circ}$ into the simplified transformation equations:

$$
\begin{array}{|l|}
\sigma_{x^{\prime} x^{\prime}}=-18.77 M P a \\
\sigma_{y^{\prime} y^{\prime}}=-13.22 M P a \\
\sigma_{z^{\prime} z^{\prime}}=-15.76 M P a
\end{array}
$$

Problem 2-6: A displacement field in a body is given by:

$$
\begin{aligned}
& u=c\left(x^{2}+10\right) \\
& v=2 c y z \\
& w=c\left(-x y+z^{2}\right)
\end{aligned}
$$

where $c=10^{-4}$. Determine the state of strain on an element positioned at $(0,2,1)$.

Problem 2-6 Solution:

Substitute the displacement into the expression of strain components, we have

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{\partial u}{\partial x}=c \cdot 2 x=10^{-4} \cdot 2 \cdot 0=0 \\
& \varepsilon_{y y}=\frac{\partial v}{\partial y}=2 c z=2 \cdot 10^{-4} \cdot 1=2 \times 10^{-4} \\
& \varepsilon_{z z}=\frac{\partial w}{\partial z}=2 c z=2 \cdot 10^{-4} \cdot 1=2 \times 10^{-4} \\
& \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\frac{1}{2}(0+0)=0 \\
& \varepsilon_{y z}=\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)=\frac{1}{2}(2 c y-c x)=\frac{1}{2}(2 \cdot 2-0)=2 \times 10^{-4} \\
& \varepsilon_{x z}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)=\frac{1}{2}(0-c y)=-1 \times 10^{-4}
\end{aligned}
$$

At $(0,2,1)$, the state of strain is

$$
\underline{\underline{\varepsilon}}=\left[\begin{array}{ccc}
0 & 0 & -1 \times 10^{-4} \\
0 & 2 \times 10^{-4} & 2 \times 10^{-4} \\
-1 \times 10^{-4} & 2 \times 10^{-4} & 2 \times 10^{-4}
\end{array}\right]
$$

Problem 2-7: The distribution of stress in an aluminum machine component is given by:

$$
\begin{array}{ll}
\sigma_{x}=d\left(c y+2 z^{2}\right), & \\
\tau_{x y}=3 d z^{2} \\
\sigma_{y}=d(c x+c z), & \tau_{y z}=d x^{2} \\
\sigma_{z}=d(3 c x+c y), & \tau_{x z}=2 d y^{2}
\end{array}
$$

where $c=1 \mathrm{~mm}$ and $\mathrm{d}=1 \mathrm{MPa} / \mathrm{mm}^{2}$. Calculate the state of strain of a point positioned at $(1,2,4)$ mm . Use $E=70 \mathrm{GPa}$ and $v=0.3$.

Problem 2-7 Solution:

Substitute the given value of c, d, E, γ into stress component expressions, we have

$$
\begin{array}{ll}
\sigma_{x}=34 M P a & \tau_{y x}=48 M P a \\
\sigma_{y}=5 M P a & \tau_{y z}=1 M P a \\
\sigma_{z}=34 M P a & \tau_{x z}=8 M P a
\end{array}
$$

Use constitutive equations

$$
\begin{array}{ll}
\varepsilon_{x x}=\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right] & \gamma_{x y}=\frac{1}{G} \tau_{x y} \\
\varepsilon_{y y}=\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{x x}+\sigma_{z z}\right)\right] & \gamma_{y z}=\frac{1}{G} \tau_{y z} \\
\varepsilon_{z z}=\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{y y}+\sigma_{x x}\right)\right] & \gamma_{x z}=\frac{1}{G} \tau_{x z}
\end{array}
$$

And $G=\frac{E}{2(1+v)}$
We have the strain components

$$
\begin{aligned}
& \begin{array}{l}
\varepsilon_{x x}=4.42 \times 10^{-4} \\
\varepsilon_{y y}=-9.57 \times 10^{-5} \\
\varepsilon_{z z}=-9.57 \times 10^{-5}
\end{array} \quad \begin{array}{l}
\gamma_{x y}=8.91 \times 10^{-4} \\
\gamma_{y z}=1.86 \times 10^{-5} \\
\gamma_{x z}=1.49 \times 10^{-4}
\end{array}
\end{aligned}
$$

Problem 2-8: An aluminum alloy plate ($\mathrm{E}=70 \mathrm{GPa}, \mathrm{v}=1 / 3$) of dimensions $\mathrm{a}=300 \mathrm{~mm}, \mathrm{~b}=400 \mathrm{~mm}$, and thickness $\mathrm{t}=10 \mathrm{~mm}$ is subjected to biaxial stresses as shown below. Calculate the change in (a) the length AB ; (b) the volume of the plate.

Problem 2-8 Solution:

The state of stress is given

$$
\begin{aligned}
\sigma_{x x} & =30 \mathrm{MPa} \\
\sigma_{y y} & =90 \mathrm{MPa} \\
\sigma_{z z} & =0 \mathrm{MPa}
\end{aligned}
$$

Use constitutive equations to calculate strains $\varepsilon_{x x}$ and $\varepsilon_{y y}$

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right]=\frac{1}{70 \times 10^{9}}\left[30-\frac{1}{3} \times 90-0\right] \times 10^{6}=0 \\
& \varepsilon_{y y}=\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{x x}+\sigma_{z z}\right)\right]=\frac{1}{70 \times 10^{9}}\left[90-\frac{1}{3} \times 30-0\right] \times 10^{6}=0.00114 \\
& \varepsilon_{z z}=\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right]=\frac{1}{70 \times 10^{9}}\left[0-\frac{1}{3}(30+90)\right]=-0.00057
\end{aligned}
$$

Given strain $\varepsilon_{y y}$, calculate the change in length in y

$$
\begin{gathered}
\varepsilon_{y y}=\frac{\Delta_{y}}{L_{o}} \\
\Delta_{y}=L_{o} \varepsilon_{y y} \\
\Delta_{y}=0.46 \mathrm{~mm}
\end{gathered}
$$

Using solutions in problem 2-2, calculate the change in volume

$$
\begin{gathered}
\varepsilon_{v}=\frac{\Delta V}{V_{o}} \\
\Rightarrow \Delta V=V_{0} \varepsilon_{v}=V_{0}\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)=a \times b \times t \times\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right) \\
\Delta V=685.72 \mathrm{~mm}^{3}
\end{gathered}
$$

Problem 2-9: Consider the general definition of the strain tensor in the 3D continuum. The three Euler-Bernoulli hypotheses of the elementary beam theory state:

1. Plane remain plane
2. Normal remain normal
3. Transverse deflections are only a function of the length coordinate x .

Proof that under the above assumptions the state in the beam is uni-axial, meaning that the only surviving component of the strain is in the length, x -direction. The proof is sketched in the lecture notes, but we want you to redo the step by step derivation.

Problem 2-9 Solution:

1. Plane remains Plane

This Hypothesis is satisfied when the u-component of the displacement vector is a linear function of z

$$
\begin{equation*}
u_{z}=u^{\circ}-\theta z \tag{1}
\end{equation*}
$$

where u° is the displacement of the beam axis

2. Normal remains normal

This hypothesis is satisfied when the rotation of the deformed cross-section θ is equal to the local slope of the middle axis

Before

After

$$
\begin{equation*}
\theta=\frac{d w}{d x} \tag{2}
\end{equation*}
$$

Combing (1) and (2), we have

$$
\begin{equation*}
u(x, z)=u^{\circ}-\frac{d w}{d x} z \tag{3}
\end{equation*}
$$

3. Deflections are only a function of x

$$
\begin{equation*}
w=w(x) \tag{4}
\end{equation*}
$$

Also, because of planar deformation

$$
\begin{equation*}
v \equiv 0 \tag{5}
\end{equation*}
$$

Evaluate all components of strain tensor

$$
\varepsilon_{x x}=\frac{\partial u}{\partial x}
$$

From equation(5): $v=0 \Rightarrow \varepsilon_{y y}=\frac{\partial v}{\partial y}=0$

From equation(4): $w=w(x) \Rightarrow \varepsilon_{z z}=\frac{\partial w(x)}{\partial z}=0$

From equation(4): $w=w(x)$ and equation(5): $v=0 \Rightarrow \varepsilon_{y z}=\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w(x)}{\partial y}\right)=\frac{1}{2}(0+0)=0$

From equation(3): $u=u^{\circ}-\frac{d w}{d x} z \Rightarrow \varepsilon_{z x}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)=\frac{1}{2}\left(-\frac{\partial w}{\partial x}+\frac{\partial w}{\partial x}\right)=0$

From equation(3):u $=u(x, z)$ and equation(5): $v=0 \Rightarrow \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u(x, z)}{\partial y}+\frac{\partial v}{\partial x}\right)=\frac{1}{2}(0+0)=0$

Only $\varepsilon_{x x}$ survives, therefore the state of strain of a classical beam theory is uniaxial

MIT OpenCourseWare
http://ocw.mit.edu

2.080J / 1.573J Structural Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

