Lecture 2

The Concept of Strain

Problem 2-1: A thin- walled steel pipe of length 60 cm , diameter 6 cm , and wall thickness 0.12 cm is stretched 0.01 cm axially, expanded 0.001 cm in diameter, and twisted through 1°. Determine the strain components of the pipe. Note that the shell with a diameter to thickness ratio of 50 is predominately in the membrane state. For plane stress there are only 3 components of the strain tensor.

Problem 2-2: Derive an expression for the change in volume of a unit volume element subjected to an arbitrary small strain tensor.

Problem 2-3: A unit square $O A B C$ is distorted to $O A^{\prime} B^{\prime} C^{\prime}$ in three ways, as shown in the figure below. In each case write down the displacement field $\left(u_{1}, u_{2}\right)$ of every point in the square as a function of the location of that point $\left(x_{1}, x_{2}\right)$ and the strain components $\varepsilon_{\mathrm{ij}}$.

Problem 2-4: The strain (plane strain) in a given point of a body is described by the 2×2 matrix below. Find components of the strain tensor $\varepsilon_{x^{\prime} y^{\prime}}$ in a new coordinate system rotated by the angle θ. Consider four cases $\theta=45^{\circ},-45^{\circ}, 60^{\circ}$ and -60°.

$$
\varepsilon_{x y}=\left[\begin{array}{cc}
0 & 0.05 \\
0.05 & 0
\end{array}\right]
$$

Problem 2-5: A cylindrical pipe of $160-\mathrm{mm}$ outside diameter and $10-\mathrm{mm}$ thickness, spirally welded at an angle of $\theta=40^{\circ}$ with the axial (x) direction, is subjected to an axial compressive load of $\mathrm{P}=150 \mathrm{kN}$ through the rigid end plates (see below). Determine the normal force $\sigma_{x}{ }^{\prime \prime}$ and shearing stresses $\tau_{x^{\prime} y}{ }^{\prime \prime}$ acting simultaneously in the plane of the weld.

Problem 2-6: A displacement field in a body is given by:

$$
\begin{aligned}
& u=c\left(x^{2}+10\right) \\
& v=2 c y z \\
& w=c\left(-x y+z^{2}\right)
\end{aligned}
$$

where $c=10^{-4}$. Determine the state of strain on an element positioned at $(0,2,1)$.

Problem 2-7: The distribution of stress in an aluminum machine component is given by:

$$
\begin{array}{ll}
\sigma_{x}=d\left(c y+2 z^{2}\right), & \tau_{x y}=3 d z^{2} \\
\sigma_{y}=d(c x+c z), & \tau_{y z}=d x^{2} \\
\sigma_{z}=d(3 c x+c y), & \tau_{x z}=2 d y^{2}
\end{array}
$$

where $\mathrm{c}=1 \mathrm{~mm}$ and $\mathrm{d}=1 \mathrm{MPa} / \mathrm{mm}^{2}$. Calculate the state of strain of a point positioned at $(1,2,4)$ mm . Use $E=70 \mathrm{GPa}$ and $v=0.3$.

Problem 2-8: An aluminum alloy plate ($\mathrm{E}=70 \mathrm{GPa}, \mathrm{v}=1 / 3$) of dimensions $\mathrm{a}=300 \mathrm{~mm}, \mathrm{~b}=400 \mathrm{~mm}$, and thickness $\mathrm{t}=10 \mathrm{~mm}$ is subjected to biaxial stresses as shown below. Calculate the change in (a) the length AB ; (b) the volume of the plate.

Problem 2-9: Consider the general definition of the strain tensor in the 3D continuum. The three Euler-Bernoulli hypotheses of the elementary beam theory state:

1. Plane remain plane
2. Normal remain normal
3. Transverse deflections are only a function of the length coordinate x .

Proof that under the above assumptions the state in the beam is uni-axial, meaning that the only surviving component of the strain is in the length, x -direction. The proof is sketched in the lecture notes, but we want you to redo the step by step derivation.

