MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF OCEAN ENGINEERING

13.811 Advanced Structural Dynamics and Acoustics

Second Half - Problem Set 1 Solution

Problem 1

(a) Using equation (2.99) of text and substituting w_{o} for surface velocity,

$$
\begin{equation*}
\dot{W}\left(k_{x}, k_{y}, 0\right)=\dot{w}_{o} L_{x} L_{y} \sin c\left(\frac{k_{x} L_{x}}{2}\right) \sin c\left(\frac{k_{y} L_{y}}{2}\right) \tag{1}
\end{equation*}
$$

Substituting $L_{x}=3 L_{y}$

$$
\begin{equation*}
\dot{W}\left(k_{x}, k_{y}, 0\right)=\dot{w}_{o} \frac{L_{x}{ }^{2}}{3} \sin c\left(\frac{k_{x} L_{x}}{2}\right) \sin c\left(\frac{k_{y} L_{x}}{6}\right) \tag{2}
\end{equation*}
$$

(b) Using equation (2.86), directivity function,

$$
\begin{equation*}
D(\theta, \phi)=-i \rho_{o} c k \dot{w}_{o} \frac{L_{x}{ }^{2}}{6 \pi} \sin c\left(\frac{k L_{x}}{2} \sin \theta \cos \phi\right) \sin c\left(\frac{k L_{x}}{6} \sin \theta \sin \phi\right) \tag{3}
\end{equation*}
$$

(c) Equation (2) can be rearranged in the normalized form,
$20 \log _{10}\left[\frac{|\dot{W}|}{w_{o} L_{x}^{2}}\right]=\frac{\sin c\left(\frac{k_{x} L_{x}}{2}\right) \sin c\left(\frac{k_{y} L_{x}}{6}\right)}{3}$

The normalized expression, $20 \log _{10}\left[\frac{|\dot{W}|}{w_{o} L_{x}^{2}}\right]$, is plotted against $k_{x} L_{x}$ and $k_{y} L_{x}$ values
for the range from -40 to 40 on the plot as shown in Fig. 1. A cutoff level of -40 dB was applied to the plot.

Fig 1. Plot of $20 \log _{10}\left[\frac{|\dot{W}|}{w_{o} L_{x}{ }^{2}}\right]$ against $k_{x} L_{x}$ and $k_{y} L_{x}$

For a normalized frequency of $k L_{x}=30$, a circle with radius of 30 is drawn on the plot. The directivity function can be sketched out using Ewald sphere construction
with a hemisphere on a 3-D plot of the contour plot as shown on Fig. 2 and the circle as equatorial base. Note that Fig. 2 is drawn on a linear scale.

In the x -direction, the number of lobes with level more than -40 dB is less as the directivity function contracts towards center since the plate is longer in that dimension and the sinc function decays more rapidly with angle θ. On the other hand, in the y-direction, the lobes decay less rapidly.

2 plots are shown in Fig.3. Fig.3(a) shows the polar plot of the directivity pattern $20 \log \left[\frac{|\dot{W}|}{w_{0}^{2}}\right]$ in the x-direction (i.e. $\varphi=0^{\circ}$) reference to 40 dB for $-\pi / 2 \leq \theta \leq \pi / 2$. $w_{o} L_{x}{ }^{2}$

Fig.3(b) shows the polar plot of the directivity pattern $20 \log \left[\frac{|\dot{W}|}{w_{o} L_{x}{ }^{2}}\right]$ in the $\mathrm{y}-$ direction (i.e. $\varphi=90^{\circ}$) reference to $40 \mathrm{~dB}-\pi / 2 \leq \theta \leq \pi / 2$.

(a)

(b)

Fig.3. Polar plot of the directivity pattern $20 \log \left[\frac{|\dot{W}|}{ـ}\right]$ reference to 40 dB (cutoff at 0 dB) $\dot{w}_{o} L_{x}{ }^{2}$ for $-\pi / 2 \leq \theta \leq \pi / 2$ in the
(a) x-direction (i.e. $\varphi=0^{\circ}$)
(b) y-direction (i.e. $\varphi=90^{\circ}$)

Problem 2

(a)

Total field in the water halfspace, ψ is given by

$$
\begin{equation*}
\psi=\left(A_{i} e^{i k_{z} z}+A_{o} e^{-i k_{z} z}\right) e^{i k_{x} x} e^{-i \omega t} \tag{1}
\end{equation*}
$$

Thus, total pressure, P_{o} at $\mathrm{z}=0$ is

$$
\begin{align*}
& P_{o}=\left.\rho \omega^{2} \psi\right|_{z=0} \\
& P_{o}=\rho \omega^{2}\left(A_{i}+A_{o}\right) e^{i k_{x} x} e^{-i \omega t} \tag{2}
\end{align*}
$$

Total displacement, w_{o} at $\mathrm{z}=0$ is

$$
\begin{equation*}
w_{o}=\left.\frac{\partial \psi}{\partial z}\right|_{z=0}=i k_{z}\left(A_{i}-A_{o}\right) e^{i k_{x} x} e^{-i \omega t} \tag{3}
\end{equation*}
$$

Using boundary condition, $P_{o}=K \bullet w_{o}$

$$
\begin{align*}
& \rho \omega^{2}\left(A_{i}+A_{o}\right)=\operatorname{Kik}_{z}\left(A_{i}-A_{o}\right) \tag{4}\\
& A_{i}=\frac{K i k_{z}-\rho \omega^{2}}{K i k_{z}+\rho \omega^{2}} A_{i}
\end{align*}
$$

The reflection coefficient at the interface, R is thus given by

$$
\begin{equation*}
R=\frac{K i k_{z}-\rho \omega^{2}}{K i k_{z}+\rho \omega^{2}} \tag{5}
\end{equation*}
$$

(b)

As stiffness of the elastic foundation, $K \rightarrow 0$ (i.e. an infinitely flexible foundation), $R \rightarrow-1$. This is similar to the R over a pressure release boundary with a lower vacuum halfspace. On the other hand, as stiffness of the elastic foundation, $K \rightarrow \infty$ (i.e. an infinitely stiff foundation), $R \rightarrow 1$. This is similar to the R over a rigid boundary with a solid lower halfspace.

As frequency of wave, $\omega \rightarrow \infty, \mathrm{R} \rightarrow-1$. This is similar to the R over a pressure release boundary with a lower vacuum halfspace. This is analogous to vibration at high frequency where the inertia term dominates over stiffness. In the context of this question, the plate is massless but the water has a density of ρ.

