MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF OCEAN ENGINEERING

13.811 Advanced Structural Dynamics and Acoustics

Second Half - Problem Set 1

Assigned: 5 Apr 2004

Due: 14 Apr 2004

Problem 1

Earl G. Williams Problem 2.3

Problem 2

Consider a 2-D water halfspace with sound speed c m/s and density ρ kg/m³ and a lower halfspace that consists of a massless plate covering the entire z = 0 axis and resting on an elastic foundation. The elastic foundation has a static stiffness of K N/m³, such that

$$P(x) = K \bullet w(x)$$

Where: P(x): Pressure along plate surface w(x): Vertical Displacement along plate surface

A plane harmonic acoustic wave of frequency ω at an angle θ is incident on the plate surface from the water halfspace as illustrated in the diagram above with pressure amplitude of A_i. The reflected wave has amplitude of A_o.

- (a) Derive an expression for A_o in terms of A_i , θ , ω , c, K and ρ .
- (b) Investigate asymptotic behavior of the expression derived in (a) as the following approaches limits:
 - i. Stiffness of the elastic foundation, K
 - ii. Frequency of wave, ω

Discuss the physical meaning of any asymptote that arises.