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CHAPTER SEVEN  

INTERNAL WAVES IN A STRATIFIED FLUID  

1	 Introduction. 

The atmosphere and o c e a n are continuously stratifed due to change in temperature, 

composition and pressure. These changes in the ocean and atmosphere can lead to 

signifcant variations of density of the fuid in the vertical direction. As an example, 

fresh water from rivers can rest on top of sea water, and due to the small difusivity, t h e 

density contrast remains for a long time. The density stratifcation allows oscillation of 

the fuid to happen. The restoring force that produces the oscillation is the buoyancy 

force. The wave phenomena associated with these oscillations are called internal waves 

and are discussed in this chapter. 

2	 Governing Equations for Incompressible Density-

stratifed Fluid. 

We are going to derive the system of equations governing wave motion in an incompress-

ible fuid with continuous density stratifcation. Cartesian coordinates x, y and z will 

be used, with z measured vertically upward. The velocity components in the directions 

of increasing x, y and z will be denoted as u, v and w. The fuid particle has to satisfy 

the continuity equation 

1 Dp @u @v @w 

+	 + +  0  (2.1)
p Dt @x @y @z

and the momentum equations 
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@u @u @u @u @p 

p + u + v + w ; , (2.2)
@t @x @y @z @x 

@v @v @v @v @p 

p + u + v + w ; , (2.3)
@t @x @y @z @y 

@w @w @w @w @p 

p + u + v + w ; ; gp, (2.4)
@t @x @y @z @z 

where p and p are, respectively, the fuid density and pressure. The fuid is taken to 

b e such that the density depends only on entropy and on composition, i.e., p depends 

only on the potential temperature e and on the concentrations of constituents, e.g., the 

salinity s or humidity q. Then for fxed e and q (or s), p is independent of pressure: 

p p(e, q ): (2.5) 

The motion that takes place is assumed to be isentropic and without change of phase, 

so that e and q are constant for a material element. Therefore 

Dp @p De @p Dq
+  0 : (2.6)

Dt @e Dt @q Dt

In other words, p is constant for a material element because e and q are, and p depends 

only on e and q. Such a fuid is said to b e incompressible, and because of (2.6) the 

continuity equation (2.1) becomes 

@u @v @w 

+ + 0 : (2.7)
@x @y @z

For an incompressible fuid, the density p satisfes the density equation 

1 Dp 

0 : (2.8) 

p D t

Assuming that the velocities are small, we can linearize the momentum equations to 

obtain 
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@u @p 

p ; , (2.9)
@t @x 

@v @p 

p ; , (2.10)
@t @y 

@w @p 

p ; ; gp: (2.11)
@t @z 

Next, we consider that the wave motion results from the perturbation of a state of 

equilibrium, which is the state of rest. So the distribution of density and pressure is the 

hydrostatic equilibrium distribution given by 

@pp ;gp (2.12)p:
@z 

When the motion develops, the pressure and density changes to 

p  pp(z) + p 

0 , (2.13) 

p  pp(z) + p 

0 , (2.14) 

where p0 and p0 are, respectively, the pressure and density perturbations of the \back-

ground" state in which the density pp and the pressure pp are in hydrostatic balance. The 

density equation now assumes the form 

0 0 0 0@p @p @p @pp @p
+ u + v + w + w 0 : (2.15)

@t @x @y @z @z

The nonlinear terms u(@p 

0/@x), v(@p 

0/@y) and w(@p 

0/@z) are negligible for small am-

plitude motion, so the equation (2.15) simplifes to 

0@p @pp
+ w 0 , (2.16)

@t @z

which states that the density perturbation at a point is generated by a v ertical advection 

of the background density distribution. The continuity equation (2.7) for incompressible 

fuid stays the same, but the momentum equations (2.9) to (2.11) assume the form 
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0@u @p 

pp ; , (2.17)
@t @x 

0@v @p 

pp ; , (2.18)
@t @y 

0@w @p 0pp ; ; gp : (2.19)
@t @z 

We w ould like to reduce the systems of equations (2.7), (2.16) and (2.17) to (2.19) to a 

single partial diferential equation. This can b e achieved as follows. First, we take the 

time derivative o f t h e continuity equation to obtain 

@2 @2 @2u v w 

+ + 0 : (2.20)
@t@x @t@y @t@z

Second, we take t h e x, y and t derivatives, respectively, of the equations (2.17) to (2.19), 

and we obtain 

0@2 u @2 p
pp ; , (2.21)
@x@t @x 

2 

0@2v @2 p
pp ; , (2.22)
@y@t @y 

2 

0 0@2w @2 p @p 

pp ; ; g : (2.23)
@t 

2 @t@z @t 

If we substitute equations (2.21) and (2.22) into equation (2.20), we obtain 

 
0 0 

 
1 @2 p @2p @2w ; + + 0 : (2.24) 

pp @x 

2 @y 

2 @ t@ z

We can eliminate p0 from (2.23) by using equation (2.16) to obtain 

0@2 w @2p @pp 

pp ; + g w: (2.25)
@t 

2 @t@z @z 

@2 @2 

Third, we apply the operator + to equation (2.25) to obtain
@x 

2 @y 

2 

   
0 0 

   
@2 @2 w @2 w @2 @2p @2 p @pp @2w @2w 

pp + ; + + g + : (2.26)
2 2 2 2 2 2@t @x @y @t@z @x @y @z @x @y 

2
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Next, we use equation (2.24) to eliminate p0 from equation (2.26), which gives the 

following partial diferential equation for w: 

  
@2 @2w @2 w 1 @ @w @2w @2w 

+ + pp + N 

2 +  0 , (2.27)
2 2 2 2 2@t @x @y pp @z @z @x @y 

where we defne 

N 

2(z) ; 

g @pp 

, (2.28) 

p @ z 

which has the units of frequency (rad/sec) and is called the Brunt-Viaisialia frequency or 

buoyancy frequency. If we assume that w varies with z much more rapidly than pp(z), 

then 

1 @ @ @2w 

pp w r , (2.29) 

pp @z @z @z 

2 

and (2.27) can b e approximated by the equation 

@2 @2 @2 @2 @2 @2w w w w w 

+ + + N 

2 +  0 : (2.30)
2 2 2 2 2 2@t @x @y @z @x @y 

The assumption above is equivalent to the Boussinesq approximation, which applies 

when the motion has vertical scale small compared with the scale of the background 

density. It consists in taking the density to b e constant in computing rates of change 

of momentum from accelerations, but taking full account of the density v ariations when 

they give rise to buoyancy forces, i.e., when there is a multiplying factor g in the ver-

tical component of the momentum equations. The Boussinesq approximation leads to 

equation (2.30) for the vertical velocity w. 

3 The Buoyancy Frequency (Brunt-Vaaisaalaa frequency). 

Consider a calm stratifed fuid with a static density distribution pp(z) which decreases 

with height z. If a fuid parcel is moved from the level z upward to z +(, it is surrounded 

by lighter fuid of density pp(z + (). The upward buoyancy force per unit volume is 
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@ t 

2 

+ N 

2(  0 , (3.33) 

where 

N 

2(z) ; 

g 

pp 

dpp 

dz 

, (3.34) 

which is called the buoyancy frequency or the Brunt V iasialia frequency. This elementary 

dpp 

g [ pp(z + () ; pp(z)] � g (,	 (3.31)
dz 

and it is negative. Applying Newton's law t o the fuid parcel of unit volume, we have 

@2 ( dpp 

pp g (	 (3.32)
@t 

2 dz 

or 

@2( 

consideration shows that once a fuid is displaced from its equilibrium position, gravity 

and density gradient provide restoring force to enable oscillations. 

4	 Internal Gravity Waves in Unbounded Stratifed 

Fluid. 

Consider the case in which the buoyancy (Brunt-Viaisialia) frequency N is constant 

throughout the fuid. Traveling wave solutions of (2.30) can b e found of the form 

w	 w0 

cos(kx + ly + mz ; !t ), (4.35) 

;! 

where w0 

is the vertical velocity amplitude and k  ( k , l, m ) is the wavenumb e r of the 

disturbance, and ! is the frequency. In order for (4.35) to satisfy the governing equation 

;! 

(2.30) for the vertical perturbation velocity, ! and k must be related by the dispersion 

relation 
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(k2 + l2)N 

2 

!2 : (4.36)
k2 + l2 + m2 

Thus internal waves can have any frequency b e t ween zero and a maximum value of 

N . The dispersion relation for internal waves is of quite a diferent c haracter compared 

to that for surface waves. In particular, the frequency of surface waves depends only 

;! 

on the magnitude j k j of the wavenumb e r , whereas the frequency of internal waves is 

independent of the magnitude of the wavenumber and depends only on the angle < that 

the wavenumb e r vector makes with the horizontal. To illustrate this, we consider the 

spherical system of coordinates in the wavenumb e r space, namely, 

;! 

k j k j cos(<) cos(e) (4.37) 

;! 

l j k j cos(<) sin (e) (4.38) 

;! 

m j k j sin(<) (4.39) 

The coordinate system in the wavenumb e r space is given in the fgure 1. 

The dispersion relation given by equation (4.36) reduces to 

!2 N cos(<): (4.40) 

Now w e can write expressions for the quantities p0 , p 

0 , u and v. From equation (2.20) we 

can write 

0 01 @2 p @2p @2w ; + !m w 0 

cos(kx + ly + mz ; !t ), 

p0 

@x 

2 @y 

2 @ t@ z 

which implies that the perturbation pressure p0 is given by 

!m w 0p0 

p 

0 ; cos(kx + ly + mz ; !t ): (4.41)
(k2 + l2)1/2 

From equation (2.16) we have the perturbation density p0 given by 



8 

m 

l 

m 

φ 

(k 
2 

+ l 
2 

)
1/2 

(k + l + m ) 
2 2 2 1/2 

θ 

k 

Figure 1: Coordinate system in the wavenumb e r space. 
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N 

2 

p 

0 ; p0w0 

sin(kx + ly + mz ; !t ): (4.42)
!g 

The horizontal velocity components can b e found from equations (2.17) and (2.18), 

which give 

(u, v) ;(k , l )(k2 + l2);1 mw0 

cos(kx + ly + mz ; !t ) (4.43)

 ( k , l )(!p 0)
;1 p 

0: (4.44) 

The above relations between pressure and velocity fuctuations can be useful for de-

ducing wave properties from observations at a fxed point. For instance, if the horizontal 

velocity components and perturbation pressure of a progressive w ave are measured, the 

horizontal component o f t h e wavenumb e r vector can be deduced from (4.44). 

A sketch showing the properties of a plane progressive internal wave in the vertical 

plane that contains the wavenumb e r v ector is presented in fgure 2. The particle motion 

is along wave crests, and there is no pressure gradient in this direction. The restoring 

force on a particle is therefore due solely to the component g cos < of gravity in the 

direction of motion. The restoring force is also proportional to the component of density 

d�change in this direction, which is cos < 

dz 

per unit displacem ent. 

Consider now the succession of solutions as < progressively increases from zero to

 /  2. When <  0 , a v ertical line of particles moves together like a rigid rod undergoing 

longitudinal vibrations. When the line of particles is displaced from its equilibrium, 

buoyancy restoring forces come into play just as if the line of particles were on a spring, 

resulting in oscillations of frequency N . The solution for increasing values of < corre-

spond to lines of particles moving together at angle < to the vertical. The restoring force 

p e r unit displacement (cos <dp0/dz) is less than the case where <  0 , so the frequency 

of vibration is less. As < tends to  /  2, the frequency of vibration tends to zero. The 

case <  /  2 i s n o t a n i n ternal wave, but it represents an important form of motion that 

is often observed. For instance, it is quite common on airplane journeys to see thick 

layers of cloud that are remarkably fat and extensive. Each cloud layer is moving in its 

own horizontal plane, but diferent layers are moving relative t o e a c h other. 
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Figure 2: The instantaneous distribution of velocity, pressure, and buoyancy perturba-

tions in an internal gravity w ave. This is a view in the x, z plane. The phase of the wave 

is constant along the slanting, dashed, and solid lines. Velocity and pressure perturba-

tions have extrema along the solid lines; buoyancy perturbations are zero along the solid 

lines. Buoyancy perturbations have extrema, and velocity and pressure perturbations 

are zero along dashed lines. Small arrows indicate the perturbation velocities, which a r e 

always parallel to the lines of constant phase. Large heavy arrows indicate the direction 

of phase propagation and group velocity. 
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4.1 Dispersion Efects. 

In practice, internal gravity waves never have the form of the exact plane wave given 

by equation (4.35), so it is necessary to consider superposition of such waves. As a 

consequence, dispersion efects become evident, since waves with diferent frequencies 

have diferent phase and group velocities as we are going to show in this section. For 

internal waves, surfaces of constant frequency in the wavenumb e r space are the cones 

< constant. The phase velocity is parallel to the wavenumb e r vector and it lies on a 

cone of constant phase. Its magnitude is 

� ! 

! N 

;! ; cos <: (4.45)! j k j j k j 

The group velocity Cg 

is the gradient of the frequency ! in the wavenumb e r space and 

therefore is normal to the surface of constant frequency !. It follows that the group 

velocity is at right angles to the wavenumb e r vector. When the group velocity has an 

upward component, therefore, the phase velocity has a d o wnward component, and vice 

versa. The group velocity vector is 

N 

Cg ; sin <(sin < cos e, sin < sin e, ; cos <): (4.46)! j k j 

Therefore, the magnitude of the group velocity is ( 

N 

! ) sin <, and its direction is at ;
j k j 

an angle < to the vertical, as illustrated in the fgure 3. 

To illustrate the efects of dispersion, we consider the case of two dimensional mo-

tions. We consider only the coordinates x and z. In this case, the wavenumb e r is the 

vector (k , m ). We consider an initially localized wave packet. Due to dispersion ef-

fects, the wave packet spreads and moves with the group velocity v ector Cg, which now 

simplifes to 

N 

Cg ; sin <(sin <, ; cos <): (4.47)! j k j 

The phase velocity is perpendicular to the group velocity vector, so the wave crests 

(lines of constant phase) move perpendicularly to the direction of propagation of the 



12 

m 

(k 
2 

+ l 
2 

)
1/2 

(k + l + m ) 
2 2 2 1/2 

θ 

φ 
C g 

φ 

m 

k 

Figure 3: Wavenumb e r vector and group velocity vector. 
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wave packet. The phase velocity is given by the equation (4.45), where the wavenumb e r 

;! 

vector k makes an angle < with the horizontal direction (see fgure 1, but now set 

e 0). 

To illustrate the efects of dispersion, we consider three diferent animations of a 

localized wave packet for the density perturbation p0 . The perturbation density p0 is 

related to the vertical velocity w by the equation 

0@p p0N 

2 

w, (4.48)
@t g 

and the governing equation for the vertical velocity w is given by the equation (2.30). 

To obtain the evolution in time of an initially localized wave p a c ket for the perturbation 

density, we apply a two-dimensional Fourier transform to equations (2.30) and (4.48). 

The two-dimensional Fourier transform pair considered is 

Z 1 

Z 1 

û(k , m ) dx dz fexp(;ikx ; imz)u(x, z)g (4.49) 

;1 ;1 

and 

ZZ 1 11 

u(x, z) dk dm fexp(;ikx ; imz) û(k , m )g : (4.50)
4 

2 

;1 ;1 

The Fourier transform of the equation (2.30) is given by the equation 

@2ŵ N 

2k2 

+ ŵ  0 , (4.51)
@t 

2 k2 + m2 

which has solution of the form 

ŵ(k, m, t) A(k , m ) ex p ( i!t) + B(k , m ) exp(;i!t), (4.52) 

where ! is given by the dispersion relation 

Nk 

! 

p : (4.53)
k2 + m2 
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The Fourier transform of the equation (4.48) is given by the equation 

0@p̂  p0N 

2 

w ^:	 (4.54)
@	t g 

From equations (4.51) and (4.54) we have that 

p0N 

2 

p̂0(k, m, t) f;iA(k , m ) ex p ( i!t) + iB(k , m ) exp(i!t)g , (4.55) 

g	! (k , m ) 

where the constants A and B are determined from the Fourier transform of the initial 

conditions for p0, given by the equations 

p	 

0(x, z, 0) f (x, z), (4.56) 

0@	p 

(x, z, 0)  0,	 (4.57)
@t 

which implies that the constants A(k , m ) and B(k , m ) are given by the equations 

ig! ^A(k , m ) f,	 (4.58)
2p0N 

2 

ig! ^A(k , m ) ; f:	 (4.59)
2p0N 

2 

The perturbation density p0(x, z, t) is fnally given by the equation 

Z n	 o 

Z 1 11 ^	 ^p 

0(x, z, t) 
8  g 

dk dm f (k , m ) exp(i!(k , m )t) + f (k , m ) exp(;i!(k , m )t) 

;1 ;1 

exp(;ikx ; imz): 

(4.60) 

^The function f (x, z) and its Fourier transform f (k , m ) are given by the equations 

1 1 1 

f (x, z) exp ; x 

2<2 ; z 

2T 2 cos(k~ x + mz~ ),	 (4.61)
2 2 2 ( !	 !) 

1 1 (k ; k~)2 1 (m ; m~ )2 1 (k + k~)2 1 (m + m~ )2 

f̂ (k , m ) exp ; ; + exp ; ;	 : 

2<T 2 <2 2 T 2	 2 <2 2 T 2 

(4.62) 
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In the animation which follows, we show the results from the numerical evaluation of 

the inverse Fourier transform in equation (4.60) for a sequence of values of the variable 

t with f̂ given by equation (4.62). 

The frst animation has as initial condition a Gaussian wave packet with < 1/4, 

T  1 /4 and k~ m~ �
2 

. This initial wave packet has a circular shape and splits in two 

parts as time increases. This two parts propagate in opposite directions from each other. 

Since the x and z components of the main wavenumb e r are equal and positive and the 

wave p a c ket has the same modulation along the x and z directions (< T ), the two parts 

of the initial wave packet travel towards the middle of the second and fourth quadrants, 

as we see in the animation. For the wave packet in the second (fourth) quadrant the 

group velocity vector p o i n ts away from the origin towards the middle of the second 

(fourth) quadrant, so the phase velocity, which is orthogonal to the group velocity, is 

oriented in the anti-clockwise (clockwise) sense, as we can see from the crests movement 

in the animation. When the two parts resulting from the initial wave packet are still 

close, we see some constructive and destructive i n terference. To see this animation, click 

here. 

The second animation has as initial condition a Gaussian wave p a c ket with <  1 /2, 

~ �T  1 /100 and k m~
2 

. This initial wave packet has a shape of an elongated ellipse 

in the x direction. In the movie frame, this initial wave packet looks almost without 

variation in the x direction. The wave packet splits in two parts as time increases. 

These two parts propagate in opposite directions from each other, in a way similar to 

the previous example. The interference efect b e t ween these two wave packets for early 

times is more intense than what was observed in the previous example, as we can see in 

the animation. To see it, click here. 

The third animation has as initial condition a Gaussian wave packet with <  1 /2, 

T  1 /20 and k~ m~ �
2 

. This initial wave packet has a shape of an elongated ellipse 

in the x direction. The movie frame shows the whole wave packet, which splits in two 

parts as time increases. This two parts propagate in opposite directions from each other, 

but the group velocity v ector has a s l i g h tly smaller component i n t h e x direction. This 

is due to the diference of the modulation of the wave packet in the x and z directions, 

as we can see in the animation. To see this animation, click here. 
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4.2 Saint Andrew's Cross. 

Here we discuss the wave pattern for internal waves produced by a localized source on 

a sinusoidal oscillation, like an oscillating cylinder for example, in a fuid with constant 

density gradient (the buoyancy frequency is constant). For sinusoidal internal waves, 

;! 0;!the wave energy fux I p u (the perturbation pressure p0 is given by equation (4.41) 

and the components of the velocity vector are given by equations (4.44) and (4.35)) 

averaged over a period is given by the equation 

; 1 w2Nmp 0! 

I 

0 fsin < cos e, sin < sin e, ; cos <g , (4.63)
2 k2 + l2 

which is parallel to the group velocity, according to equation (4.46). Therefore, for 

internal waves the energy propagates in the direction of the group velocity, which is 

parallel to the surfaces of constant phase. This fact means that internal waves generated 

by a localized source could never have the familiar appearance of concentric circular 

crests centered on the source, as we see, for example, for gravity surface waves. Instead, 

the crests and other surfaces of constant phase stretch radially outward from the source 

because wave energy travels with the group velocity, which is parallel to surfaces of 

constant phase. 

For a source of defnite frequency ! : N (less than the buoyancy frequency), those 

surfaces are all at a defnite angle 

;1(<  cos ! /N ), (4.64) 

to the vertical ; therefore, all the wave energy generated in the source region travels at 

that angle to the vertical. Accordingly, it is confned to a double cone with semi-angle 

<. The direction of the group velocity vector along the double cone is specifed by the 

fact that energy has to radiate out from the source. The direction of propagation of the 

lines of constant phase is also specifed in terms of the direction of the group velocity 

and by the fact that the phase velocity 

; N cos <! 

C ; fcos < cos e, cos < sin e, sin <g (4.65)! j k j 
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is orthogonal to the group velocity, a n d that 

; ; N! ! 

C + C g ; fcos e, sin e, 0g : (4.66)! j k j 

Then, given the direction of the group velocity, the orthogonality of the phase and 

group velocity plus the condition (4.66), the direction of the phase velocity i s specifed. 

If the group velocity has a positive v ertical component, the phase velocity has a negative 

vertical component and vice-versa. The two-dimensional case of an oscillating cylinder 

is illustrated in fgure 4. 

This unique property of anisotropy has been verifed in dramatic experiments by 

Mowbray and Stevenson. By oscillating a long cylinder at various frequencies vertically 

in a stratifed fuid, equal phase lines are only found along four beams forming \St. 

Andrew's Cross", see fgure 5 for ! /N  0 :7 and ! /N  0 :9. It can be verifed that the 

angles are < 45 degrees for ! /N 0:7, and < 26 degrees for ! /N 0:9, in close 

accordance with the condition (4.64). 

5 Waveguide b e h a vior. 

In this section we study free wave propagation in a continuously stratifed fuid in the 

presence of boundaries. Attention is restricted to the case in which the bottom is fat. 

The equilibrium state that is being perturbed is the one at rest, so density, and hence 

buoyancy frequency, is a function only of the vertical coordinate z. We start with an 

ocean, which has an upper boundary. The atmosphere is somewhat diferent from the 

o c e a n since it has no defnite upper boundary, so a study of waves in this situation is 

made later in this section. 

5.1 The oceanic waveguide 

Since we assume the undisturbed state as the state of rest, fuid properties are constant 

on horizontal surfaces and, furthermore, the boundaries are horizontal. Solutions of the 

perturbation equation (2.27) can b e found in the form 
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Figure 4: Phase and group velocities. 
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Figure 5: St Andrew's Cross in a stratifed fuid. In the top fgure ! /N 0:9 and in 

the left bottom fgure ! /N  0 :7. 

© sources unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
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w(x , y , z, t ) ŵ(z) ex p [ i(kx + ly ; !t )] (5.67) 

The equation for ŵ(z) can be found by substitution of equation (5.67) into the governing 

equation (2.27). We obtain 

1 @ @ŵ (N 

2 ; !2) 

pp + (k2 + l2) ŵ(z) 0 (5.68) 

pp @z @z !2 

The boundary conditions for this equation are the bottom condition of no fux across 

it, given by the equation 

ŵ(z) 0 at z ;H, (5.69) 

a n d a t t h e free-surface we have the linearized condition 

0@p 

p ) at z  0 , (5.70)pgw(z
@t 

where p0 is the perturbation pressure. From this equation we can obtain a free-surface 

boundary condition for ŵ(z). We apply the operator 

@ 

@
t 

to the equation (2.24), and then 

we substitute equation (5.70) into the resulting equation. As a result, we obtain the 

equation 

@3 @2 @2w w w 

g + at z  0 (5.71)
2 2 2@t @z @x @y 

Now, if we substitute equation (5.67) into the equation (5.71), we obtain the free-surface 

boundary condition for ŵ(z), which follows 

@ŵ g
+ (k2 + l2) ŵ(z) 0 at z  0 : (5.72)

@z !2 

To simplify the governing equation for ŵ(z), we make the Boussinesq approximation, 

such that equation (5.68) simplifes to 
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@2ŵ (N 

2 ; !2)
+ (k2 + l2) ŵ(z) 0 , (5.73)

@z 

2 !2 

with boundary conditions given by equations (5.72) and (5.69). The two boundary 

(bottom and free-surface) have the efect of confning the wave energy to a region of 

fnite extent, so the ocean can b e considered as a waveguide that causes the energy to 

propagate horizontally. 

A useful piece of imaginary is to picture internal waves propagating obliquely through 

the ocean, refections at the upper and lower boundaries ensuing no loss of energy from 

the wave guide, whereas horizontal propagation is uninhibited. 

Next, we obtain the general solution of equation (5.73) under the boundary condi-

tions (5.72) and (5.69). We frst consider the case where !2 > N 

2 . For this case the 

general solution has the form 

sinh[m(z + H)] (!2 ; N 

2) 

ŵ(z) with m 

2 (k2 + l2), (5.74)
sinh(mH) !2 

which already satisfes the bottom boundary condition. The free-surface boundary con-

dition (5.72) gives the dispersion relation 

g 

m tanh(mH) 
!2 

(k2 + l2), (5.75) 

which is similar to the dispersion relation for surface waves. Actually, the solution (5.74) 

is not an internal wave, but a surface gravity wave. To have internal waves, we need 

that !2 : N 

2 . This is the next case to consider. We consider the general solution of 

equation (5.73), which is given by the equation 

(N 

2 ; !2)2 (k2 + l2),ŵ(z) sin[m(z + H)] with m (5.76)
!2 

which already satisfes the bottom boundary condition. If we substitute equation (5.76) 

into the free-surface boundary condition (5.72), we obtain the dispersion relation 
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N 

2 ; !2 gm tanh(mH): (5.77) 

For a given value of the frequency !, this dispersion relation gives a countable set of 

values for the modulus of the horizontal component ( k2 + l2) of the wavenumber, or for 

a given value of the modulus of the horizontal component of the wavenumber, we have 

a c o u n table set of possible value for the frequency !. For ! smaller or of the same order 

of the buoyancy frequency N , the free-surface displacement is small, and we can assume 

we have a rigid wall instead o f a f r e e surface, so equation (5.72) reduces to 

ŵ(z) 0 at z  0 : (5.78) 

This b o u n d a r y condition gives a dispersion relation of the form 

sin(mH) 0 (5.79) 

or 

(k2 + l2)N 

2H2 

!2 , n  1 , 2, 3, : : : , (5.80)
2 2 k2 + l2)H2n + ( 

which is close to the result given by the dispersion relation given by the free-surface 

boundary condition (5.77). The value of m for the case with a free-surface is slightly 

larger than the case with the rigid lid approximation. 

If the ocean is perturbed with a spatial structure of one of the modes (a specifc value 

of m for a given !), then the subsequent behavior in time is described by equation (5.67), 

i. e., there is an oscillation with a particular frequency. Such a situation, however, is 

unlikely, so it is necessary to represent the initial structure in space as a superposition 

of modes (for a given !, we have a countable set of values for k2 + l2). Then each of 

these will behave in time as found above, and so the solution can b e constructed at all 

times by taking the appropriate superposition of modes. 
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5.2 Free Waves in a semi-infnite region. 

The atmosphere does not have a defnite upper boundary as does the ocean, so solutions 

of equation (5.73) will now b e considered for the case of a semi-infnite domain z > 0. 

In this case there are two types of solutions, the frst b e i n g typifed by the case N 

constant. The only solutions of equation (5.73) that satisfy the condition at the ground 

z  0 a n d remain bounded at infnity are sinusoidal, i. e., 

ŵ(z) sin ( mz), (5.81) 

where m has the same expression as the one given in equation (5.76). There is now 

no restriction on m, so according to the functional relation b e t ween m and ! given in 

equation (5.76), the frequency ! can have a n y v alue in the range 0 : !  N  , i . e., there 

is a continuous spectrum of solutions. Superposition of such solutions can b e used to 

solve initial-value problems, and have the from of Fourier integrals. 

When N varies with z, there is another type of solution possible, namely, one that 

satisfes the condition at the ground yet decays as z !1 . These are waveguide modes, 

and there are, in general, only a fnite numb e r possible. A simple example is provided 

by the case in which a region of depth H of uniform large buoyancy frequency N1 

underlies a semi-infnite region of uniform small buoyancy frequency N2. The layer with 

buoyancy frequency N1 

has depth H and lies at 0  z  H  and the semi-infnite layer 

with buoyancy frequency N2 

lies at z > H . For 0  !  N  2, the solution in both layers 

has the form given by equation (5.81) with m m1 

in the frst layer and m m2 

in 

the second layer. The wave frequency is constant across the interface of the two layers, 

which gives the relation 

N 

2 N 

2 

1 2 (5.82) 

m1
2 + k2 + l2 m2

2 + k2 + l2 

b e t ween the vertical wavenumbers m1 

and m2. For this case, the spectrum is continuous 

and ! can assume any value b e t ween 0 and N2. This is not true for the case when 

N2  !  N  1, when the frequency ! can assume only a fnite set of values in the range 

N2  !  N  1. In this case, the solution of equation (5.73) for the frst layer is given by 

the equation 
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(N 

2 ; !2) 

ŵ(z) sin(m1z) where m 

2
1 

1 

!2 

(k2 + l2), (5.83) 

and in the second layer we have solution given by the equation 

(!2 ; N2
2)
(k2 ŵ(z) exp(;1z ) where 12 + l2): (5.84)

!2 

At t h e intersection z H b e t ween the two l a yers, the perturbation pressure p0 and the 

vertical velocity w should be continuous. Alternatively, this condition can be expressed 

in terms of the ratio 

0p
Z , (5.85) 

p0w 

which must b e the same on both sides of the boundary. It is convenient to refer to 

Z as the \impedance". The condition that the impedance in b o t h sides of the layers 

interface should be the same gives the possible values for ! (eigenvalues). This condition 

is expressed by the equation 

!2 ; N 

2 

cot2(m1H) 
2 : (5.86)

N 

2 ; !2 

1 

The spectrum in terms of the wave frequency has a continuous part plus a discrete 

part, solution of equation (5.86). The modes ŵ for 0  !  N are of sinusoidal shape 2 

in both layers, and for N2 

! N1 

the modes ŵ(z) are sinusoidal in the frst layer 

and decay exponentially in the second layer. Thus, to deduce how the perturbation 

will change with time from some initial state, it is necessary to represent this state 

as a superposition both of discrete waveguide modes and the continuous spectrum of 

sinusoidal modes. The relative amplitude of the diferent modes depends on the initial 

state. 

6 Energetics of Internal Waves. 

The energy equation for internal waves, under the assumption of small perturbations, 

incompressible and inviscid fuid and irrotational fow, can b e obtained by multiplying 
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Figure 6: Two-layer fuid system with a free-surface. 

equations (2.17), (2.18) and (2.19), respectively, b y u, v and w, b y m ultiplying equation 

0/p

of continuity (2.7) and the defnition of the buoyancy frequency. We obtain 

(2.16) by g2p pN 

2, and then adding the result and by taking into account the equation 

0 0@ 1 

; ) 1 gp @(p0u) @(p v) @(p0w)2 2 2pp u + v + w + + + + 0 : (6.87)
@t 2 2 pNp 2 @x @y @z

The term pp(u2 + v2 + w2)/2 stands for the perturbation kinetic energy density. The 

2 0 

2 

term (p0u, p0v , p 

0w) stands for the perturbation energy density fux and the term 

1 

g
2 ��N 

2 

stands for the perturbation p o t e n tial energy density. The identifcation of this term 

with the perturbation potential energy density is less obvious, so it is helpful to consider 

the case o f a t wo-layer fuid illustrated in the fgure 6. 

For this system, the potential energy is equal to 

� � Z Z Z Z Z 

1 1 

V pgzdzdxdy p2g[ 
2 ; (H2 

; h)2] + p1g[(H2 

; h)2 ; H2] dxdy
2 2� � Z Z 

1 1 

p2g[ 
2 ; (H2 

; h)2] + p1g[(H2 

; h)2 ; H2] dxdy (6.88)
2 2

If we skip the constant terms in the equation above, we end up only with the potential 

energy associated with the energy due to the perturbation, which is equal to 

� � Z Z 

1 1 

p2g 
2 + g(p1 

; p2)h
2 dxdy, (6.89)

2 2
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and in a m a n y layered system, each interface will contribute a term like 

Z Z 

1 

(p1 

; p2)h
2dxdy, (6.90)

2

and in the limit of a continuously stratifed fuid this becomes 

Z Z Z Z Z Z 

1 @pp 1 ; gh 

2dzdydx pNp 2h2dxdydz, (6.91)
2 @z 2 

where h is the displacement of a fuid element from its equilibrium position. Since the 

density of a fuid element at its p ertu rb ed level z + h is equal to the density pp(z) at its 

equilibrium position, the perturbation density p0 is given by 

p 

0 pp(z) ; pp(z + h) �; h
@pp 

, (6.92)
@z 

and so the right hand side of equation (6.91) becomes 

Z Z Z 2 021 g p
dxdydz: (6.93)

2 pNp 2 

The connection with (6.87) is now clear. For periodic waves in a medium with uniform 

properties, the integral over each wavelength is the same, and so the mean over a large 

volume becomes equal to the mean over one wavelength in the limit as the volume 

tends to infnity. Hence, it is useful to consider mean quantities rather than integrated 

quantities. The mean is being defned as the mean over a wavelength, and denoted by

 >. The energy density o f a n i n ternal wave is defned as the mean perturbation energy 

per unit volume. In other words, by 

1 1 g2  p 

02 > 

E pp (u 

2 + v 

2 + w 

2) > + (6.94)
2 2 pN 

2p

When integrated over a large volume, equation (6.87) shows that the rate of change 

of energy over that volume is equal to the fux of energy across the sides. since this 

fux is also periodic, the average over a large plane area is approximately the same as 
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the average over one wavelength, so it is convenient to consider the spatial mean for the 

;
fuxes as well. Thus the energy fux density vector F 

!0 is defned by the equation 

;! 

F 

0  p 

0(u 

0 , v 

0 , w 

0) >, (6.95) 

where (u0 , v 

0 , w 

0) is the perturbation velocity v ector. 

7 Mountain Waves. 

Internal waves in the atmosphere and ocean can be generated by a v ariety o f m e c hanisms. 

Often the source region is approximately horizontal, so the vertical velocity component 

can efectively b e specifed on some horizontal surface, and the motion away from the 

source can b e calculated from the equations of motion. We frst consider the case in 

which air or water is moving with uniform horizontal speed over a succession of hills 

and valleys with elevation A0 

above the horizontal plane z 0. Second, we consider 

air moving with uniform horizontal velocity over a single ridge (localized source) in 

an infnite atmosphere, and third, we consider a air or water moving with horizontal 

velocity over single ridge in a fnite atmosphere or o c e a n (waveguide case). We assume 

that the atmosphere or ocean density stratifcation is such that the buoyancy frequency 

is constant. 

7.1 Governing Equation. 

We consider an air or water moving at a constant velocity U (z) over a periodic or 

localized topography given by the equation 

z ((x) (7.96) 

We assume the fuid incompressible and the fow irrotational. The fuid velocity vector 

(u, v) satisfes the continuity equation 

@u @w 

+  0 , (7.97)
@x @z
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and the momentum equations 

p 

@ 

@ 

u 

t 

+ u 

@ 

@ 

u 

x 

+ w 

@ 

@ 

u 

z 

; 

@ 

@ 

p 

x 

, (7.98) 

p 

@ 

@ 

w 

t 

+ u 

@ 

@ 

w 

x 

+ w 

@ 

@ 

w 

z 

; 

@ 

@ 

p 

z 

; pg: (7.99) 

The fuid density has to satisfy the equation 

1 

p 

D 

D 

p 

t
 0 (7.100) 

Now we write the horizontal velocity i n t h e form 

u(x, z) U (z) + u 

0(x, z), (7.101) 

We substitute equation (7.101) in the equations (7.97) to (7.100). We assume the 

velocities u0 and w as small quantities, so we can linearize the resulting equations. 

The linearized form of the continuity equation is 

@u 

0 @w 

+  0 , (7.102)
@x @z

and for the momentum equation, its linearized form is 

0@u @u @U @p 

p + U + w ; , (7.103)
@t @x @z @x 

@w @w @p 

p + U ; ; pg: (7.104)
@t @x @z 

For the density equation (7.100) we obtain 

1 @p @p @p @p
+ U + u 

0 + w 0 (7.105) 

p @t @x @x @z

We consider the wave motion as a result from the perturbation of the state of equi-

librium, which is the state of rest. So the distribution of the density and pressure is the 
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pp 

@ 

@ 

u 

t 

0 

+ U 

@ 

@ 

u 

x 

+ w 

@ 

@ 

U 

z 

; 

@ 

@ 

p 

x 

0 

, (7.106) 

pp 

@ 

@ 

w 

t 

+ U 

@ 

@ 

w 

x 

; 

@ 

@ 

p 

z 

0 

; p 

0 g , (7.107) 

and the density equation assumes the form 

1 

pp 

@ 

@ 

p 

t 

0 

+ U 

@ 

@ 

p 

x 

0 

+ w 

@ 

@ 

p 

z

0 

0 : (7.108) 

hydrostatic equilibrium distribution given by equation (2.12). When the motion devel-

ops, the pressure and density are given, respectively, b y equations (2.13) and (2.14), and 

p0 and p0 are the pressure and density perturbations of the \background state". Now 

the momentum equation assume the form 

As we did in section 2, we would like to reduce the system of equations given by the 

equations (7.102), (7.106), (7.107) and (7.105) to a single partial diferential equation 

describing the evolution of a fow quantity, like the vertical velocity, for example. To 

accomplish that we follow t h e steps b e l o w. 

First, we apply the time derivative t o t h e continuity equation (7.102) to obtain 

0@2 @2u w 

+  0 : (7.109)
@t@x @t@z

Second, we take the x derivative of the equation (7.106) to obtain 

0 0 0@2u @2u @w @U @2 p
pp + U + ; (7.110)
@x@t @x 

2 @x @z @x 

2 

Third, we eliminate the u0 variable from the equation (7.110) above. To do so, we use 

equation (7.109) and the x derivative of the continuity equation (7.102). After the u0 

variable is eliminated, equation (7.110) assumes the form 

0@2w @2w @w @U @2 p
pp ; ; U + ; (7.111)

@z@t @x@z @x @z @x 

2 
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0 

Fourth, we apply the operator 

@ + U @ to the equation (7.107) to obtain
@t @x 

2 2 2 2 0 2 0 0@ w @ w 2 

@ w @ p @ p @p @p
pp + 2 U + U ; ; U ; g + U , (7.112)

@t2 @x@t @x2 @t@z @x@z @t @x 

and with equation (7.105) we can eliminate p0 from equation (7.112). The result is the 

equation 

2 2 2 2 0 2 0@ w @ w 2 

@ w @ p @ p @pp 

pp + 2 U + U ; ; U ; gw , (7.113)
@t2 @x@t @x2 @t@z @x@z @z 

Next, we apply the operator 

@ 

@
x 

2

2 

to equation (7.113). Then, we eliminate p0 from the 

resulting equation by using equation (7.111). We end up with the equation 

4 4 4 2 2@ w @ w @ w @ @ @ @ w @ w 

pp + 2 U + U2 + U ;pp ; pUp
2 2 3 4@x @t @x @t @x @z @t @x @t@z @x@z 

2
(7.114)

@w @U @pp @ w 

+ pp + g ,
@x @z @z @x2 

which is the desired partial diferential equation in terms of the vertical velocity w. We 

can simplify the equation above. We can write it in the form 

2 2@ @ 

2 

@ w 1 @ @w @ @ 1 @ @U @w @ w 

+ U + pp ; + U pp + N2(z)  0 ,
@t @x @x2 pp @z @z @t @x pp @z @z @x @x2

(7.115) 

where N(z) is the buoyancy frequency defned according to equation (2.28). If we assume 

that w varies with z much more rapidly than pp(z), then we can write 

1 @ @w @2 w 

pp r (7.116) 

pp @z @z @z2 

and 

1 @ @U @w @ @U @w 

pp r : (7.117) 

pp @z @z @x @z @z @x 

As a result, equation (7.115) simplifes to 
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@ @ 

2 

@2 w @2 w @ @ @ @U @w @2 w 

+ U + ; + U + N 

2(z)  0 ,
@t @x @x 

2 @z 

2 @t @x @z @z @x @x 

2

(7.118) 

We can simplify this equation further by assuming that the velocity U is constant. 

In this case we end up with an equation of the form 

@ @ 

2 

@2 w @2w @2 w 

+ U + + N 

2(z)  0 , (7.119)
2 2 2@t @x @x @z @x 

Next, we discuss boundary conditions for the equations (7.114) to (7.119). Equations 

(7.114) to (7.119) are simpler versions of the equation (7.114). For the case of a fnite 

or infnite atmosphere we need a boundary condition at the ground and a radiation 

condition as z !1 . The boundary condition at the ground is the condition of no fux 

trough the ground, given by the equation 

D @ @ @
(z ; ((x)) 0 or + ( U + u 

0) + w (z ; ((x)) 0 at z ((x) (7.120)
Dt @t @x @z 

We linearize the boundary condition on the ground located at z ((x). We expand 

the terms in equation (7.120) with respect to z  0 , a n d w e obtain the linear boundary 

condition 

w(x, z, t) U 

@ 

@ 

( 

x 

on z  0 (7.121) 

For an infnite atmosphere we need a radiation condition, which ensures that the energy 

fux is away from the ground. In other words, energy is radiated away from the ground 

by t h e i n ternal waves generated by the topography. For the case of a fnite atmosphere, 

we need a boundary condition on the top part of the atmosphere. We postpone the 

discussion of the radiation condition or the top boundary condition when we consider 

specifc ground topographies (periodic, single ridge, etc.). 
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7.2 Periodic Mountain. 

We consider a topography of sinusoidal mountains. In this case, ((x) is given by the 

equation 

((x) A0 

sin(kx ) (7.122) 

where k is the wavenumb e r of the topography. The boundary condition (7.121) at the 

ground for this case assumes the form 

w(x, z, t) A0Uk cos(kx ) at z  0 (7.123) 

In this example, we assume a constant b u o yancy frequency N for the entire atmosphere. 

Under such condition, we can assume a solution for the steady state regime of the form 

w(x, z, t) A cos(kx + mz), (7.124) 

where k is the topography wavenumber, since the solution (7.124) has to satisfy the 

boundary condition at the ground, given by the equation (7.123). m is the wavenumb e r 

in the vertical direction. After we substitute the solution (7.124) into the boundary 

condition (7.123), we obtain that 

A A0U k: (7.125) 

The governing equation for this problem (constant buoyancy frequency) is given by 

equation (7.119). If we substitute the solution (7.124) into equation (7.119), we obtain 

the an expression for the vertical wavenumb e r , which follows 

2 

N 

2 

; k2 m (7.126)
U 

2 

N
U

According to the equation above, if > k , them m is real and we obtain waves which 

propagates through the atmosphere. If N
U

k, them m is imaginary and we have a 

solution which decays exponentially away from the ground. 
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7.2.1 Case 

N > k .
U 

There are two solutions for equation (7.126) (plus or minus sign of the square root of the 

right hand side of equation (7.126)), and to decide which o n e w e should use to represent 

energy being radiated away from the ground we are going to consider the energy fux 

in the vertical direction. According to equation (6.95), the average energy fux in the 

vertical direction is 

F 

0 

z  p 

0 w > (7.127) 

where p0 can b e obtained from equation (7.111) in terms of the vertical perturbation 

velocity w. For the vertical velocity given by equation (7.124), we have 

m 

p 

0 p cos(kx + mz) (7.128)pUA 

k 

Now, we compute the average vertical energy fux, and we obtain the expression 

1 

F 

0 pUA2 

m 

(7.129)p ,z 2 k 

and since we need a positive vertical average energy fux for the energy to b e radiated 

away from the ground, we chose m as given by the equation 

r 

N 

2 

m  + 

U 

2 

; k2: (7.130) 

Since energy is b e i n g radiated away from the ground, there is drag exerted by the 

topography due to the generation of the internal waves. The magnitude of the drag 

force p e r unit area is equal to the rate T p e r unit area at which horizontal momentum 

is transfered vertically by the waves. This is given by the equation 

T ;pp p F 

0/Uuw z 

1 

p (7.131)pA2 

m 

2 k 
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For the vertical wavenumb e r m equal to zero, we h a ve the horizontal cut-of wavenumber 

kc, given by the equation 

N 

: (7.132)kc 

U 

This wavenumb e r divides the two types of solutions (N /U > k and N/U k), and 

corresponds to a wavelength 2  /k c 

equal to the horizontal distance traveled by a fuid 

particle in one buoyancy period. From equation (7.126) we have that 

N
k2 + m 

2  ( kc)
2: 

U 

Thus, the angle <0 b e t ween wave crests and the vertical changes according to the equation 

k Uk 

cos <0 (7.133)
kc 

N 

The angle <0 given by the equation above is illustrated in the fgure 7. 

k 

mk c 

ϕ ’ 

Figure 7: Angle <0 . 

7.2.2 Case 

N k .
U

In this case the wavenumb e r m is a pure imaginary number, and the solution given by 

equation (7.124) assume the form 

w(x, z, t) Aifexp(;1z + ikx)g (7.134) 
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where 1 is given by the equation 

12 k2 ; 

N 

2 

U 

2 

: (7.135) 

This solution does not represents a propagating wave. It decays exponentially as we 

move away from the topography. There is no energy radiated away from the ground 

and there is no drag force exerted by the topography. To see this, we consider the 

expression for the pressure in this case, which is given by the equation 

A 

p if;ip1p U0 exp(;1z + ikx)g (7.136)
k 

This is out of phase with the vertical velocity, i.e., is zero when w is a maximum or a 

minimum, and is a maximum or a minimum when w is zero. Thus, the rate Fz 

0 of doing 

work by the topography o ver the atmosphere is zero. 

7.3 Localized Topography in an Infnite Atmosphere. 

In this section we consider the steady state disturbance in an infnite atmosphere due 

to a stream with a horizontal constant speed U passing over a localized topography 

z ((x). We assume that the buoyancy frequency N is constant. For a reference frame 

fxed to the ground, the governing equation (7.119) assumes the form 

@2 @2 @2 @2w w w 

U 

2 + N 

2+  0 : (7.137)
2 2 2 2@x @x @z @x 

In this reference frame we will obtain a steady disturbance downstream to the localized 

topography. So, in this reference frame we have zero wave frequency and zero phase 

speed. If we consider a reference frame moving with the stream (constant speed U ), we 

will see the localized topography moving with speed ;U , and we will see waves with 

phase speed ;U matching the speed on the topography (steady disturbance downstream 

to the topography in the fxed reference frame). Here we consider the second reference 

frame, since in this reference frame we can easily speak in terms of phase and group 

velocity, which makes more simple the discussion of the radiation condition for this 
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case. The governing equation in the moving reference frame is given by equation (2.30) 

without the y component. In other words, 

@2 @2 @2 @2w w w 

+ + N 

2 0 , (7.138)
@t 

2 @(x0)2 @z 

2 @(x0)2

where x0 is the horizontal axis in the moving reference frame. The horizontal axis in the 

fxed and moving frame are related according to the equation 

x x 

0 + U t: (7.139) 

The boundary condition on the ground, given by the equation (7.121), for this ref-

erence frame assumes the form 

0 

@( 

w(x , z , t ) U (x 

0 + Ut ) at z  0 : (7.140)
@x 

To solve the boundary value problem given by equations (7.138) and (7.140) with the 

appropriate radiation condition, we consider the Fourier transform pair in the x0 variable, 

given by the equations 

Z +1 

f̂ (k) f (x) ex p ( ;ikx0)dx0 (7.141) 

;1 

and Z +1 

^f (x) 
1 

f (k) exp(ikx0)dk: (7.142)
2 ;1 

We apply the Fourier transform to the governing equation (7.138) and to the boundary 

condition (7.140). The governing equation (7.138) in the wavenumb e r domain assumes 

the form 

@2 @2 ŵ ;k2 + ; k2N 

2 ŵ  0 , (7.143)
@t 

2 @z 

2 

and the boundary condition (7.140) assumes the form 
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ŵ(k , z, t ) ikU (̂(k) exp(ikUt) (7.144) 

Next, we consider a time dependence of the form 

ŵ(k , z, t ) ŵ0(k , z ) exp(;i!t) (7.145) 

If we substitute equation (7.145) into the governing equation (7.143) we end up with 

the governing equation for ŵ0, which follows: 

0@2 ŵ
!2 + ( N 

2k2 ; !2k2) ŵ0  0 (7.146)
@z 

2 

Solutions of the equation (7.146) are in the form 

ŵ0(k , z ) A exp(;im(k)z), (7.147) 

where m(k) can b e obtained in terms of k and ! by substituting equation (7.147) into 

equation (7.146). Its expression is given by the equation 

k2(N 

2 ; !2) 

m 

2 

!2 

, (7.148) 

and which branch w e are going to choose from the two possible branches given by equa-

tion (7.148) will be decided to satisfy the radiation condition that energy is transported 

by the internal waves away from the ground. Equation (7.148) can b e rewritten as a 

dispersion relation, which follows 

kN 

! 

p (7.149) 

m2 + k2 

From the dispersion relation above we can obtain the group velocity v ector. The group 

velocity is the speed with which energy is propagated by the internal waves, it is the 

gradient o f t h e wave frequency with respect to the wavenumber, then 
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; m2N mkN ! 

C g 

, ; : (7.150)
(m2 + k2)3/2 (m2 + k2)3/2 

Next, we are going to discuss the radiation condition for this problem and to decide 

about which branch o f m(k , ! ) g i v en by equation (7.148) we should use. The appropriate 

radiation condition for this problem is that energy should b e radiated away from the 

ground. This implies that the vertical component of the group velocity vector should 

be positive. In other words, 

mkN ; > 0: (7.151)
(m2 + k2)3/2 

The inequality (7.151) implies that for k > 0 we need m to b e negative and for k 0 

we need m to b e positive. As a result, we chose the appropriate branch of m given by 

equation (7.148) as follows: 

• For k 2 0 w e have that 

8 

m(k,N /U ) 
{ 

:  

1/2h i 

;  

;i 

;
[ UN
)2 

k2 ; 

N
U

; k2 if jkj : 

(7.152) , )J1/2; 

N
U

N
U

if jkj >

• For k 0 we have that 

8 

m(k,N /U ) 
{ 

:  

1/2h i 

U
N

)2  

k2 ;  

;
[ N

U
; k2 if jkj :

(7.153) , )J1/2; 

N
U

if jkj > N
U

;i 

where we used in equation (7.148) the fact that 

! ! ;U or k ; , (7.154)
k U 

which is the dopler efect related to the change from a fxed to a moving reference frame. 

According to equations (7.117), (7.150) and (7.154), the horizontal component of the 

group velocity v ector Cg can b e written as x
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2m
Cgx 

;U ; , (7.155)! j k j2 

which implies a negative v alue for the horizontal component of the group velocity. From 

this equation we also realize that the horizontal component of the group velocity is 

in the same direction as the horizontal component of the phase speed, but smaller 

magnitude. This implies that we see waves downstream the localized topography. If the 

magnitude of the horizontal component of the group speed was larger than the horizontal 

component of the phase speed, the wave disturbance would have appear upstream of the 

localized topography. From equations (7.145) and (7.147), we can write the expression 

for ŵ(k , z, t ) in the form 

0 w(x , z , t ) A exp(;im(k,N /U )z + ikUt) (7.156) 

To obtain the solution, we substitute equation (7.156) in the boundary condition (7.144). 

We obtain 

A ikU (̂(k): (7.157) 

Now the expression for ŵ(k , z, t ) can b e obtained with the help of equations (7.156), 

(7.152), (7.153) and (7.157), and if we apply the inverse Fourier transform to the result-

ing equation, we obtain 

8 s 

w(x 

0 , z , t ) ; 

+ 

U 

{
: 

Z N/U  

0 

ik (̂(k) s i n ( 

Z 1 

N/U  

ik (̂(k) e x p ( ; 

s 

k2 ; 

N 

U 

2 

N 

U 

; k2z + k U 

2 

z) sin(+k U 

t + k x 

t + k 

0)dk 

x 

0)dk 

9 }
 

(7.158) 

In terms of the fxed reference frame, the vertical velocity w is given by the equation 
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8 s { N/U  

2
U 

Z 

N 

w(x, z) ; ik(̂(k) sin( ; k2z + kx )dk : 0 

U s 9 (7.159) Z 

N1 

2 }
+ ik(̂(k) exp(; k2 ; z) sin (+ kx )dk 

UN/U  

since x0 x ; Ut . Next, we consider an example of a localized topography, the \witch 

of Agnesi", for which ((x) (fxed reference fram e) is given by the equation 

A0
((x) , (7.160)

1 + ( x/b)2 

and its Fourier transform is given by the equation 

(̂(k) A 0b exp(;jkb j): (7.161) 

For this particular example, the vertical velocity is given by 

8 s Z 

N{ N/U  

2 

w(x, z) ; UA 0b k exp(;bjkj) sin ( ; k2z + kx )dk : 0 

U s 9 (7.162) Z 1 

2 }N 

+ k exp(;bjkj ; k2 ; z) sin (+ kx )dk 

UN/U  

To obtain a picture of the fow over the topography, it is more appropriate to consider 

stream lines instead of the vertical velocity w. The relationship b e t ween the stream 

function 1(x, z) and the vertical velocity w(x, z) is given by the equation 

D1 @1 

w(x, z) U : (7.163)
Dt @x 

According to the equations (7.162) and (7.163), the stream function 1(x, z) for this 

problem is given by the equation 
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8 s {Z 2N/U  N 

1(x, z) A0b exp(;bjkj) sin ( ; k2z + kx )dk : U0 s 9 (7.164) Z 

N1 

2 }
+ exp(;bjkj ; k2 ; z) sin(+kx )dk 

UN/U  

By inspecting equation (7.164), if the buoyancy frequency N is zero, the stream function 

1 has a simple expression given by the equation 

UA 

1(x, z) 
0 

, (7.165)
1 + [ x/(b + z)]2 

and we realize that no wave disturbance is generated downstream the topography, as 

illustrated in fgure (8). On the other hand, if the buoyancy frequency N is non-zero, 

there always waves generated downstream the topography a s illustrated in fgure (9). 

7.4 Localized Topography in a Finite Atmosphere. 

In this section we consider the steady state disturbance in a fnite atmosphere due to the 

stream with horizontal constant speed U passing over a localized topography z ((x). 

We assume the buoyancy frequency N constant along the atmosphere. For a reference 

frame fxed on the ground, we have the governing equation (7.137) for the fow vertical 

velocity w. For this governing equation we h a ve the boundary condition at the ground, 

given by equation (7.121), and we also consider a boundary condition at z h, which 

is the top of the fnite atmosphere. This boundary condition is given by the equation 

w(x, z) 0 at z h: (7.166) 

In this case no energy is radiated in the vertical direction. Instead enery is transported 

downstream of the topography or it is not radiated at all, as we will see from the 

discussion and results that will follow along this section. We consider in this section 

a reference system moving with the stream (constant velocity U with respect to the 

ground), as we did in the previous section. In this reference system, the governing 
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Figure 8: Stream lines for the case of zero value for the buoyancy frequency N . A0

and b  4. 
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Figure 9: Stream lines for the case of non-zero value for the buoyancy frequency N . 

N /U  1, A0 

1 and b  4. 
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equation for the vertical fow v elocity w is given by equation (2.30). At the ground, we 

have the boundary condition given by equation (7.140), and at the top of the atmosphere 

we consider the boundary condition (7.166). As in the previous section, we consider the 

Fourier transform pair given by equations (7.141) and (7.142). For ŵ(k , z, t ) (Fourier 

transform of w(x0 , z, t )), we consider the time dependence 

ŵ(k , z, t ) ŵ0(k , z ) ex p ( ;i!t): (7.167) 

The governing equation for ŵ0(k , z ) is given by equation (7.146) and it has also 

to satisfy the boundary condition (7.144) and the Fourier transform of the boundary 

condition (7.166). This implies that we should have ! ;kU . We assume a general 

0solution for ŵ of the form 

ŵ0 B sinh(m(h ; z)), (7.168) 

which already satisfes the Fourier transform of equation (7.166). If we substitute equa-

tion (7.167) into the ground boundary condition given by equation (7.144), we obtain 

ikU (̂(k)
B , (7.169)

sinh(mh)

and if we substitute equation (7.168) into the governing equation (7.146), we obtain for 

the vertical wavenumb e r m the expression 

k 

m (!2 ; N 

2)1/2  ( k2 ; (N /U )2)1/2 , (7.170)
! 

or we can obtain a dispersion relation, which follows 

kN 

! 

p : (7.171)
k2 + m2 

This dispersion relation will be necessary to obtain the group velocity o f t h e w ave distur-

bances generated by the topography, which will b e necessary to discuss how to deform 
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the integration contour of the inverse Fourier transform of ŵ(k , z, t ). By substituting 

equation (7.169) into equation (7.168), we obtain for ŵ(k , z, t ) the expression 

sinh(m(z ; h)) 

ŵ(k , z, t ) ikU (̂(k) exp(ikUt), (7.172)
sinh(mh) 

and its inverse Fourier transform gives the expression for w(x0 , z, t ), which follows: 

Z 1U sinh(m(z ; h)) 

w(x 

0 , z, t ) ik(̂(k) exp(ik(Ut + x 

0))dk (7.173)
2 sinh(mh);1 

This inverse Fourier has closed form solution, which is basically the sum of the residue 

of part of the poles of the integrand in equation (7.173). To obtain these p o l e s , w e use 

1 2Y z
sinh z z 1 + (7.174)

l2 2 

l=1 

Therefore, we can write 

( r Q1 

2 (h;z)2 

(h ; z) 1 + 

m
2l=1sinh(m(h ; z)) 

l2 Q1 

( r , (7.175)
sinh(mh) 

(mh)2 

h 1 +l=1 l2 2 

which implies that we have poles in the k complex plane for 

( 

2 ( r )1/2 

2N 

k ± ; l2 with l  1 , 2, : : : (7.176)
U h 

These are frst order poles which are usually pure imaginary numb e r s , but we can have 

real poles for non-zero buoyancy frequency values if 

N > 

l� for some values of l (smaller
U h 

values of l). The real p o l e s are associated with waves generated by the presence of the 

N l�localized topography. These are called Lee waves. If 

U h 

for l 2 1, there is no real 

poles, which implies no waves associated with the localized topography. In this case we 

have just a local evanescent wavefeld close to the localized topography. 

To evaluate the integral in equation (7.173), we consider a closed contour, which is 

the original integration contour along the real axis plus a semi-circle of infnite radius 
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lying in the upper half part of the complex k plane for (Ut + x0) > 0, or a semi-circle 

of infnite radius lying in the lower half part of the complex k plane for (Ut + x0) 0. 

We consider a deformation also of the real axis to take into account the real poles that 

we may have. We have to decide if we deform the real axis to pass above or below the 

real poles. This decision is associated if we have waves downstream or upstream of the 

localized topography, and to carry it out, we need to compute the group velocity, which 

is given by 

2N 

2m ! m
; ,	 (7.177)Cg 

(m2 + k2)3/2 k 

! j k j 

where ! /k is the phase velocity of the wave following the topography, which has value 

;U . Then we have 

2m
Cg 

;U ; ;U 0,	 (7.178)! j k j 

which implies group velocity in the same direction of the phase velocity, but with mag-

nitude less than the phase velocity. This implies that the waves are behind the localized 

topography (downstream). If the group speed was larger than the phase velocity, the 

waves would be ahead of the topography (upstream). As a result, we consider the con-

tribution of the real poles only for the case (Ut + x0) > 0. Then, we deform the real axis 

to pass below the real poles that we m i g h t h a ve. The integration contours are illustrated 

in fgure 10. 

The contribution of the integral along the part of the contour that lies at the infnite 

in the complex k plane is zero. Therefore, the only contribution comes from the poles 

inside the closed contour illustrated in the fgure 10. Now, the expression for the vertical 

velocity w(x0 , z, t ) can be written as follows: 

•	 Case (Ut + x0) > 0. We assume that the frst L poles are real, and the poles for 

l > L are pure imaginary. We have that 
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Imag{k}A) 

B) 

POLES 

Re{k} 

Re{k} 
Imag{k} 

Figure 10: (A) - Deformed integration contour for the case (Ut +x0) > 0, (B) - Deformed 

integration contour for the case (Ut + x0) 0. 
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X 

0 

L 

i	 sinh(m(k,N /U )(h ; z)) (ik(Ut +x0 )) pw(x , z , t ) ; Res ikU (̂(k)	 e j
k= (N/U  )2 ;(j� /h )22	 sinh(m(k,N /U )h)

j=1 X 

L 

i	 sinh(m(k,N /U )(h ; z)) (ik(Ut +x 

0 )) p+ ; Res ikU (̂(k)	 e j
k=; (N/U  )2 ;(j� /h )22	 sinh(m(k,N /U )h)

j=1 X 

1	 

sinh(m(k,N /U )(h ; z))
+ ;iRes ikU (̂(k)	 e(ik(Ut +x0 )) j p

k=i (j� /h )2 ;(N/U  )2sinh(m(k,N /U )h)
j=L+1 

(7.179) 

where Res stands for residue and 

p
m(k,N /U ) k2 ; (N /U )2	 (7.180) 

•	 Case (Ut + x0) 0. We assume only poles that are pure imaginary numbers lying 

in the lower half part of the complex k plane. We have that 

X 

1	 

sinh(m(k,N /U )(h ; z)) 

w(x 

0 , z, t ) iRes ikU (̂(k)	 e(ik(Ut +x0 )) j p
k=;i (j� /h )2 ;(N/U  )2sinh(m(k,N /U )h)

j=L+1 

(7.181) 

Since, the minimum value of l is one, the critical speed for a given value of the 

N	h Nhbuoyancy frequency N is U . For current values U > , there is no wave 

disturbance downstream of the localized topography. 

To illustrate the fow for this problem, we change from the moving reference frame 

to the fxed reference frame (x0 + Ut x), and we consider the fow stream function 

1(x, z) defned in the previous section in terms of the vertical velocity w(x, z) according 

to the equation (7.163). Therefore, the stream function 1(x, z) is g iv en by the equation 

Z	 11 sinh(m(z ; h))^1(x, z) ((k)	 exp(ikx)dk, (7.182)
2 sinh(mh);1 p

and its evaluation in terms of the residues at the poles (N /U )2 ; (j /h )2 follows: 
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• Case x > 0. We assume that the frst L poles are real, and the poles for l > L are 

pure imaginary. We have that 

X 

L 

i sinh(m(k,N /U )(h ; z))
1(x, z) ; Res (̂(k)	 exp(ikx) j p

k= (N/U)2 ;(j� /h)22 sinh(m(k,N /U )h)
j=1 X 

L 

i sinh(m(k,N /U )(h ; z))
+ ; Res (̂(k)	 exp(ikx) j p

k=; (N/U)2 ;(j� /h)22 sinh(m(k,N /U )h)
j=1 

1 X sinh(m(k,N /U )(h ; z))
+ ;iRes (̂(k)	 exp(ikx) j p

k=i (j� /h)2 ;(N/U)2sinh(m(k,N /U )h)
j=L+1 

(7.183) 

•	 Case x 0. We assume only p o l e s that are pure imaginary numb e r s lying in the 

lower half part of the complex k plane. We have that 

X 

1 

sinh(m(k,N /U )(h ; z))
1(x, z) iRes (̂(k)	 exp(ikx) j p

k=i (j� /h)2 ;(N/U)2sinh(m(k,N /U )h)
j=L+1 

(7.184) 

The equations (7.183) and (7.184) can b e written in a simple way in terms of the 

quantities ej, 1 j and aj defned in the appendix A. 

•	 Case x > 0, where the frst L poles are assumed real numbers, and the other poles 

are in the upper part of the complex k plane. 

L	 1 X	 X 

1(x, z) ;/jej sin(ajx) ; /j1j exp(;ajx), (7.185) 

j=1 j=L+1 

where /j is defned as 

^	 ^/j 

((±aj) and /j 

((±iaj),	 (7.186) 

since the chosen topography has Fourier transform even with respect to the real 

and imaginary axis of the complex k plane. 
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•	 Case x 0, where we consider the p o l e s above the real axis in the complex k 

plane. 

1 X 

1(x, z) ; /j 

1j 

exp(aj 

x), (7.187) 

j=L+1 

We chose for ((x) the same topography we considered in the previous section. The 

stream lines for this fow are illustrated in fgure 11, 12 and 13. 

For stream speeds that approach the critical values 

N
l� 

h from below, the group velocity 

Cg 

for the l-th lee wave approaches the stream speed. Therefore, according to the linear 

theory, no energy is radiated away from the source by this lee wave. If l  1 , n o energy 

is radiated away from the source, since for values of U just b e l o w this critical value we 

have only one lee wave. In this situation, non-linear efects became important and waves 

are generated upstream, as discussed qualitatively in the next section. 

8	 Upstream In�uence. 

A	 Residue of the poles for the fnite atmosphere 

problem. 

Here we give the expression for the residue of the integrand in equation (7.182), which 

is used to compute the fow streamlines illustrated in the fgures above. First, we label 

the wavenumbers as aj 

, as follows: 

•	 For N/U > j /h we have, 

p
±aj	 

± (N /U )2 ; (j /h )2 (A.188) 

•	 For N/U  j/h we have, 

p
±iaj	 

±i (j /h )2 ; (N /U )2 (A.189) 
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Figure 11: Stream functions for the \Witch of Agnasi" topography in a fnite atmosphere 

with U /N  9 and A0  1 /2. We expect to see a single lee wave for this value of N /U . 
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Figure 12: Stream functions for the \Witch of Agnasi" topography in a fnite atmosphere 

with U /N 2 and A0 

1/2. We expect to see a superposition of four lee waves for 

this value of N /U . 
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Figure 13: Stream functions for the \Witch of Agnasi" topography in a fnite atmosphere 

with U /N 1 and A0  1 /2. We expect to see a superposition of nine lee wave for this 

value of N /U . 
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Figure 14: Stream functions for the \Witch of Agnasi" topography in a fnite atmosphere 

with U /N  3 /4 and A0  1 /2. We expect to see a superposition of twelve l e e w ave f o r 

this value of N /U . 
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Next, we give the expression for the residues in equations (7.183) and (7.184). 

•	 Case x 2 0. We consider in this case the real p o l e s for which j 1, : : : , L . We 

frst give t h e residue at the real poles. 

sinh(m(k,N /U )(h ; z))
Res (̂(k)	 exp(ikx)dk jk=±aj 

±(̂(±aj 

)ej 

, (A.190)
sinh(m(k,N /U )h)  

where ej 

is given by the equation:  

(j /h 

2) sin [j (h ; z)/h] 

ej 

p for j  1 , : : : , L (A.191) 

cos(j ) (N /U )2 ; (j /h )2 

The poles in the upper part of the complex k plane give the residue which follows: 

sinh(m(k,N /U )(h ; z))^	 ^Res ((k)	 exp(ikx)dk jk=iaj 

((iaj)(i1j 

), (A.192)
sinh(m(k,N /U )h)  

where 1j 

is given by the equation:  

(j /h 

2) sin[j (h ; z)/h]
1j 

p for j L + 1 , : : : (A.193) 

cos(j ) (j /h )2 ; (N /U )2 

•	 Case x 0. We consider for this case the poles in the lower part of the complex 

k plane. The residue at these poles follows: 

sinh(m(k,N /U )(h ; z)) ^Res (̂(k)	 exp(ikx)dk jk=;iaj 

((;iaj 

)(;i1j 

)
sinh(m(k,N /U )h) 

(A.194) 
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