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CHAPTER SIX 

FORCED DISPERSIVE WAVES ALONG A NARROW CHANNEL 

Linear surfae gravity w aves propagating along a narrow  hannel display i n teresting 

phenomena. At f r s t w e onsider free waves propagating along an infnite narrow  hannel. 

\e g i v e the solution for this problem as a superposition of wave modes and we illustrate 

onepts like the notion of ut-of frequeny. Seond, we onsider a semi-infnite hannel 

with fored waves exited by a wave maker loated at one end of the hannel. As in 

the previous ase, the wave feld generated by the wave maker an b e desribed as a 

superposition of wave modes. As the wave maker starts exiting the fuid, a w ave front 

develop and starts propagating along the hannel if the exitation frequeny is above t h e 

ut-of frequeny for the frst hannel wave mode. If the exitation frequeny is below 

the ut-of frequeny for the frst hannel mode, the wave disturbane stays loalized 

lose to the wave maker, and for the partiular ase where the exitation frequeny 

mathes the natural frequeny of a partiular hannel wave modes, there is resonane 

b e t ween this partiular wave mode and the wave m a k er, and the wave amplitude at the 

wave maker grows with time. 

Efets of non-linearity and dissipation are not taken into aount. In this hapter 

we obtain and illustrate through animations the free-surfae displaement evolution in 

time along a semi-infnite narrow  hannel exited by a w ave maker at one of its ends. 

1	 Free Wave Propagation Along a Narrow Waveg

uide. 

\e onsider free waves propagating along an infnite hannel of depth h and width 2b. 

\e adopt a oordinate system x, y, z, where x and z are in the horizontal plane and y is 

the vertial oordinate. The x axis is along the hannel, the lateral walls are loated at 



  

2 

z = ±b and the bottom is the plane y = -h. The free surfae is loated at y = r(x, z, t), 

whih is unknown. \e assume irrotational fow and inompressible fuid suh that the 

veloity feld an be given as the gradient o f a p o t e n tial funtion <(x, y, z, t), where t is 

the time parameterization. The linearized boundary value problem for propagation of 

free waves is given by the set of equations 

V2<(x , y , z, t ) =0 for -o x  o, -h  y  0 and - b z  b,  (1.1) 

�2 < �< 

2 

+ g =0 at y = 0 , (1.2)
�t �y 

�< 

=0 at y = -h, (1.3)
�y
 

�<


=0 at z = ±b, (1..)
�z 

and appropriate radiation onditions. This is an homogeneous boundary value problem 

that an be solved by the tehnique of separation of variables. First we assume that the 

free waves propagating along the hannel are given as a superposition of plane mono-

hromati waves. Due to the linearity of the boundary value problem, we need only 

to solve it for a single nono-hromati plane wave with wave frequeny w. The time 

dependene is 

exp(-iwt), 

and now w e an write the potential funtion <(x , y , z, t ) and the free-surfae displaement 

r(x, z, t) in the form 

<(x, y, z, t) = <(x, y, z) exp(-iwt), (1.5) 

r(x, z, t) = r(x, z) exp(-iwt). (1.6) 

Now the boundary value problem given by equations (1.1) to (1..) assume the form 
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V2<(x, y, z) =0 for -o  x o, -h y 0 a n d - b z  b , (1.7) 

-w 

2< + g 

� < 

� y 

=0 at y = 0 , (1.8) 

�< 

=0 at y = -h, (1.9)
�y
 

�<
 

=0 at z = ±b, (1.10)
�z 

where we eliminated the free surfae displaement r(x, z) and redued the boundary 

value problem to a boundary value problem in one dependent v ariable, <(x, y, z). Next, 

we apply the tehnique of separation of variables to solve the boundary value problem 

given by equations (1.7) to (1.10). \e assume the potential funtion <(x, y, z) given as 

� �
sin(kzz) � ) H(y),<(x, y, z) r exp(±ikx) (1.11) 

os(kzz) 

where the possible values kz 

is determined by the boundary ondition at the hannel 

walls loated at z = ±b, and the possible values of the onstant k are disussed below. If 

we substitute the expression given by equation (1.11) into the boundary value problem 

given by equations (1.7) to (1.10), we obtain a Sturm-Liouville problem (one-dimensional 

boundary value problem with a seond order diferential equation) for the funtion H(y), 

whih is given by the equations 

Hyy 

+ A H(y) = 0 , (1.12) 

-w 

2H(y) + gH y 

= 0 at y = 0 , (1.13) 

Hy 

= 0 at y = -h, (1.1.) 

where A2 = -kz
2+k2 . The onstant A represents a set of eigenvalues, whih are funtions 

of the wave frequeny w, o f t h e gravity aeleration g and of the depth h. 

If we apply the boundary onditions given by equation (1.10) to the potential funtion 

<(x, y, z), we realize that we an use either os(kzz) or sin(kz 

z) in the expression for 

<(x, y, z) given by equation (1.11), but with diferent set of possible values for the 



. 

onstant kz 

. The set of values for kz 

are determined by the boundary ondition (1.10) 

and the hoie b e t ween os(kzz) and sin(kzz). If we onsider the z dependene of the 

potential <(x, y, z) given in terms of os(kzz), the onstant kz 

has to assume the values 

t nt
kz = ± with n as a natural number. (1.15)

2b b 

If we onsider the z dependene of the potential <(x, y, z) g iv en in terms of sin(kz 

z), the 

onstant kz 

has to assume the values 

mt
kz = ± with m as a natural number. (1.16)

b 

The general form of the solution for the equation (1.12) is 

H(y) = A osh(A(y + h)) + B sinh(A(y + h)), (1.17) 

but the boundary ondition on the bottom given by the equation (1.1.) implies that 

B = 0 . The boundary ondition at the free-surfae (y = 0 ) g i v es the eigenvalue equation 

or dispersion relation 

w 

2 = gA tanh(Ah) (1.18) 

for the onstant A. This impliit eigenvalue equation has one real solutions A0 

and an 

infnite ountable set of pure imaginary eigenvalues iA1, l = 1, 2, . . . . Assoiated with 

these eigenvalues we have the eigenfuntions 

osh(A0(y + h))
H0(y) = , (1.19)

osh(A0h) 

os(A1(y + h))
H1(y) = , with l = 1 , 2, . . . (1.20)

os(A1h) 

The term exp(ikx)(exp(-ikx)) in the equation (1.11) above for <(x, y, z) represents a 

wave propagating to the right (left) if the onstant k is real, or a right (left) evanesent 
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wave if k is a pure imaginary number, or a ombination of both if k is omplex. \e 

label the onstant k as the wavenumber. Sine, we are interested in free propagating 

waves, we need the onstant k to be a real number. The value of this onstant is given 

in terms of the onstants A and kz, aording to the equation 

k2 2 = A - kz 

2 , (1.21) 

where the possible values of kz 

are given by the equations (1.15) and (1.16). The possible 

values of A are solutions of the dispersion relation given by the equation (1.18). Sine 

we w ant k as a real number, this exludes the imaginary solutions of the equation (1.18), 

so we an write the equation above in the form 

k =A0

2 - kz 
2 , (1.22) 

k =A0

2 - kz 
2 , (1.23) 

where we appended the indexes n and m to the onstant k to make lear its dependene 

on the eigenvalues kz and kz . 

Now we an write the potential funtion <(x, y, z) in th e form 

  �  osh(A0(y + h))
<(x, y, z) = [A exp(ik x) + B exp(-ik x)] sin(kz z)

osh(A0h)
�  


 


   osh(A0(y + h))
+ [A exp(ik x) + B exp(-ik x)] os(kz z) ,

osh(A0h)
�  

(1.2.) 

and the free-surfae displaement r(x, z) is given by the equation 

 
�   
  iw osh(A0(y + h)) 

r(x, z) = - (A exp(ik x) + B exp(-ik x)) sin(kz z)
g osh(A0h)

�     
  osh(A0(y + h))

+ (A exp(ik x) + B exp(-ik x)) os(kz z) ,
osh(A0h)

�  

(1.25) 
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where the value of the onstants A , A , B and B are speifed by the appropriate 

radiation onditions. 

A

Aording to the value of kz or kz , the onstants k and k in the equations (1.2.) 

and (1.25) may be real (propagating wave mode) or pure imaginary numbers (evanesent 

wave m ode). If we fx the value of kz or kz (fx the value of m or n), for a given depth 

h, we an vary the wave frequeny w suh that A0 

> k z (kz ) or A0  k z (kz ). \hen 

0 

> kz (kz ), k (k ) is a real numb e r and we have a propagating wave mode, but 

when A0 

kz (kz ) we have that k (k ) is a pure imaginary numb e r and the wave 

mode assoiated with this value of k is evanesent. So, the wave frequeny value where 

kz = A 0(kz = A 0) is alled the ut-of frequeny for the mth (nth) wave mode. 

Next, we plot the dispersion relation given by equation (1.18) as a funtion of the 

wavenumb e r k and the depth h for various values of the eigenvalues kz (sine wave 

modes in the z oordinate) in the fgures 1 and 2. As the value of kz inreases (value 

of m inreases), the wave frequeny assume larger values for the onsidered range of the 

wavenumb e r k. The wave frequeny value at k = 0 for a given kz (given m) is the ut-

of frequeny for the wave mode assoiated with the eigenvalue kz . For a fxed value 

of kz , frequenies below t h e ut-of frequeny implies in pure imaginary wave n umb e r s 

and the assoiated wave mode is exponentially dereasing (evanesent) or exponentially 

growing. \ave modes assoiated with pure imaginary wave n umbers do not partiipate 

in the superposition leading to free waves solutions. Aording to fgures 1 and 2, the 

higher the wave frequeny, the higher the numb e r of wave modes partiipating in the 

superposition leading to free waves solutions. 

Another way to see that the wave modes assoiated with imaginary wave numb e r s 

(wave b e lo w the wave mode ut-of frequeny) do not propagate is through the wave 

mode group veloity. In fgures 3 and ., we plot the group veloity for the frst 10 

wave modes assoiated with the eigenvalues kz (m from 0 to 9). For wave frequenies 

above the ut-of frequeny, the onsidered wave mode (fxed value of kz ) has a real 

wavenumb e r k and non-zero group veloity, a s w e an see through fgures 3 and .. As the 

wave frequeny approahes the ut-of frequeny, the group veloity of the onsidered 

wave mode approahes zero, aording to fgures 3 and .. At the ut-of frequeny of 

the onsidered wave mode, its group veloity is zero and no energy is transported by 
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Figure 1: \ave frequeny as a funtion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 100 meters. 
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Figure 2: \ave frequeny as a funtion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 0 .1 meters. 
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this wave mode for wave frequenies at or b e l o w the wave mode ut-of frequeny. 

Aording to fgures 3 and ., the group veloity f o r e a  h w ave mode has a maximum 

value, whih deays as the value of kz inreases (value of m inreases). The frst wave 

mode (sine wave mode with kz 

= 0) has the largest maximum group veloity, and sine 

its ut-of frequeny is zero, we  a n h a ve free propagating waves for any w ave frequeny 

for the hannel speifed by its depth h, its width 2b and the gravity aeleration g. 

Above, we l o o k ed at the wave modes with sine dependene in the z oordinate. For the 

wave modes with osine dependene in the z oordinate, the minimum absolute value 

of the eigenvalue kz is larger than the minimum absolute value for the eigenvalues 

kz , whih is zero. Therefore, for any wave frequeny we have free waves propagating 

along the hannel. For the osine wave modes there is a minimum ut-of frequeny. 

Propagation of this type of wave mode is possible only for wave frequenies above their 

minimum ut-of frequeny. 

2	 Fored Wave Propagation Along a Narrow Waveg

uide. 

Now we onsider fored waves propagating along a semi-infnite hannel with the same 

depth h and width 2b as the hannel in the previous setion. The semi-infnite hannel 

has a wave maker at one edge of the hannel, whih generates wave disturbanes that 

may o r m a y not propagate along the hannel. The solution for the fored waves is given 

as a superposition of wave modes. The same wave modes we obtained in the previous 

setion. Evanesent wave modes are also part of the solution in this ase. They stay lo-

alized lose to the wave m a k er and desribe the loal wave f e l d . For a mono-hromati 

exitation, the wave modes with ut-of frequeny b e l o w the exitation frequeny on-

stitute the propagating wave feld, and the wave modes with ut-of frequeny above th e 

exitation frequeny are evanesent and stay loalized lose to the wave maker. Their 

superposition gives the evanesent wave feld. 
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Figure 3: Group veloity as a funtion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 100 meters. 
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Figure .: Group veloity as a funtion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 0 .1 meters. 
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3 Initial Boundary Value Problem. 

\e onsider the same oordinate system used in the previous setion. The wave maker is 

loated at x = 0 and the hannel lays at x > 0. The linearized boundary value problem 

for the fored waves is similar to the boundary value problem for the free waves problem. 

The diferene is the boundary ondition desribing the efet of the wave maker and 

the fat that the hannel is now semi-infnite. The linear boundary value problem for 

fored waves is given by the set of equations 

V2<(x, y, z, t) = 0 for 0  x o, -h y 0 and - b z  b, (3.26) 

�2< �	< 

+ g	 =0 at y = 0 , (3.27)
�t 

2	 �y
 

�<
 

=0 at y = -h,	 (3.28)
�y
 

�<
 

=0 at z = ±b,	 (3.29)
�z 

�< wA 

= F (z)G(y)f(t) on x = 0 ,	 (3.30)
�x b 

and the free surfae displaement r(x, z, t) is related to the potential funtion <(x , y , z, t ) 

aording to the equation 

1 �< 

r(x, z, t) = - (x, 0, z, t ).	 (3.31) 

g � t 

The funtion f(t) is a known funtion of time. Atually, we hose an harmoni exita-

tion, so we have 

f(t) = os(wt ),	 (3.32) 

where w is the exitation frequeny. \e need also to onsider initial onditions for the 

boundary value problem above. They are given by the equations 

<(x, y, z, 0) =0, (3.33) 

<t(x, y, z, 0) =0, (3.3.) 
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where the initial ondition (3.3.) is equivalent to have a still free surfae at t = 

0 (r(x, z, 0) = 0). Next, we solve the initial boundary value problem, whih is dis-

ussed in the next setion. 

3.1 Solution of the Initial Boundary Value Problem. 

The frst step to solve the initial b o u n d a r y value problem given by equations (3.26) 

to (3.30) is to apply the osine transform in the x variable. This results in a non-

homogeneous Helmholtz-like equation for the potential funtion under homogeneous 

boundary onditions. Sine the resulting equation is non-homogeneous, the solution 

is given as the superposition of the solution for the homogeneous part of the problem 

plus a partiular solution that handles the non-homogeneity. To solve the assoiated 

homogeneous problem, we use the method of separation of variables as in the previ-

ous setion. The solution of the homogeneous problem is given as a superposition of 

modes in the y and z variables. The partiular solution is obtained using the homo-

geneous solution through the method of variation of the parameters. The onstants of 

the homogeneous solution are obtained by applying the boundary onditions to the full 

solution (homogeneous plus partiular solutions). Next, we disuss in detail the steps 

outlined above. 

\e onsider the osine transform pair 

 
]f (k) = f (x)  o s ( k x )dx (3.35) 

0 

and  
1 ]f (x) = f (k) os(kx )dk. (3.36)
2t 0 

If we apply the osine transform (3.36) to the seond partial derivative o f t h e potential 

funtion <(x , y , z, t ) w i t h respet to the x variable, we have that

 
<xx 

os(kx )dx = -<x(0, y , z, t ) - k2<](k , y , z, t ), (3.37) 

0 



�  
 �  

    

�  
 �  

    

1.
 

sine we assumed that <x 

- 0 and < - 0 as x -o . The term <x(0, y , z, t ) is speifed 

by the boundary ondition at x = 0 and given by equation (3.30). Next, we apply 

the osine transform to the initial boundary value problem given by equations (3.26) to 

(3.30). This results in the set of equations 

<]yy 

+ <]zz 

- k2<] = <x(0, y , z, t ) = 

Aw 

F (z)G(y) os(wt ), (3.38)
b 

]<tt 

+ g< y 

=0 on y = 0 , (3.39) 

]<y 

=0 on y = -h, (3..0) 

]<z 

=0 on z = ±b, (3..1) 

with the initial onditions given by equations (3.33) and (3.3.) written in the form 

]<(k , y , z, 0) =0, (3..2) 

]<t(k , y , z, 0) =0. (3..3) 

This is a non-homogeneous initial boundary value problem for the funtion <](k , y , z, t ) 

(osine transform of <(x, y, z, t)). Our strategy to solve this initial boundary value 

problem is to fnd the general form of the solution of the homogeneous part of the 

initial boundary value problem given by equations (3.38) to (3..1) plus a partiular 

solution for the non-homogeneous part of this initial boundary value problem. To fnd 

the value of the onstants of the homogeneous part of the solution, we apply the initial 

and boundary onditions to the full solution (homogeneous plus partiular). Next, we 

onsider the homogeneous part of the initial b o u n d a r y value problem for <], whih is 

given as the superposition of wave modes obtained in the previous setion. So, the 

solution of the homogeneous problem is similar to the one given by equation (1.2.). 

The solution for the homogeneous problem is 

]<H 

= {[A (k , t ) osh(A (y + h)) + B (k , t ) sinh(A (y + h))] os(kz z)} 

+ {[C (k , t ) osh(A (y + h)) + D (k , t ) sinh(A (y + h))] sin(kz z)} , 



  

�  
 �  

    

�  
 �  

    

�  
 �  

     

�  
 �  
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where A2 = k2 +kz 
2 , A2 = k2 +kz 

2 , and kz and kz are given respetively, in equations 

(1.16) and (1.15). As we mentioned before, the general solution is given as a superpo-

sition of the homogeneous solution <]H 

plus a partiular solution. \e assume that the 

partiular solution has the form 

]
{[  

D
] }

<p 

= A (k , y , t ) osh(A (y + h)) + 

D k , y , t ) sinh(A (y + h)) os(kzB ( z)

{[
D

] }
+ C (k , y , t ) osh(A (y + h)) + 

DD (k , y , t ) sinh(A (y + h)) sin(kz z) . 

\e substitute the potential <]p 

in the non-homogeneous Helmholtz equation (3.38) in 

the y and z variables. \e also impose that 

{ [ ] }�<]p D= A A sinh(A (y + h)) + 

D osh(A (y + h)) os(kz z)B 

�y 

(3...)
 { [ ] } 

+ A CD sinh(A (y + h)) + 

DD osh(A (y + h)) sin(kz z) . 

The proedure above results in the set of equations for the amplitudes 

D , 

D , CD andA B 

DD . 

(AD )y 

osh(A (y + h)) + (BD )y 

sinh(A (y + h)) =0, (3..5) 

(CD )y 

osh(A (y + h)) + (DD )y 

sinh(A (y + h)) =0, (3..6) { } Aw
 

A (AD )y 

sinh(A (y + h)) + (BD )y 

osh(A (y + h)) = 

b2 

G(y) os( wt )F , (3..7)
 { } Aw
 

A (CD )y 

sinh(A (y + h)) + ( DD )y 

osh(A (y + h)) = 

b2 

G(y) os( wt )F , (3..8)
 

where 

F 

F 

= 

= 

:

: 

F (z) s i n (kz 

: 

: 

F (z) os(kz 

z)dz, 

z)dz. 

(3..9) 

(3.50) 
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If we solve the set of equations above and integrate with respet to the y variable 

D D Dfrom -h to 0, we obtain the following expressions for the amplitudes A , B , C and 

DD , w h ih follows: 

AwDA = - os(wt )F G (y), (3.51)
b2A 

BD = 

Aw 

os(wt )F H (y), (3.52)
b2A 

AwDC = - os(wt )F G (y), (3.53)
b2A 

AwDD = os(wt )F H (y), (3.5.)
b2A 

where the funtions G (y), H (y), G (y) and H (y) are given by the equations 

y 

G (y) = G(p) sinh(A (p + h))dp, (3.55) 

: 

y

H (y) = G(p) osh(A (p + h))dp, (3.56)
: 

y

G (y) = G(p) sinh(A (p + h))dp, (3.57)
: 

y

H (y) = G(p) osh(A (p + h))dp. (3.58)
: 

Now, the total solution <](k , y , z )  a n written in the form 

  
Aw]< = A - os(wt )F G (y) osh(A (y + h))
b2A   

Aw 

+ B + os(wt )F H (y) sinh(A (y + h)) os(kz z)
b2A   (3.59) 

Aw 

+ C - os(wt )F G (y) osh(A (y + h))
b2A   

Aw 

+ D + os(wt )F H (y) sinh(A (y + h)) sin(kz z) . 

b2A 

In the expression above w e still need to obtain the onstants A , B , C and D of the 

homogeneous part of the solution. To do so, we apply the boundary onditions (3.39) 



  

    
 

 
   

    

 

 

   

   

 

  

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 

17 

at y = 0 and (3..0) at y = -h. The boundary ondition at y = -h, given by the 

equation (3..0), implies that D = 0( B = 0). The boundary ondition at y = 0 gives 

the equation 

(A )tt 

+ gA tanh(A h)A = 

A 

b2 

F 

A 

{
w3 os(w t ) [ H (0) tanh(A h) -G (0)] 

(3.60) 

+gA w os(w t ) [ G (0) tanh(A h) -H (0)]} . 

\e also obtain a similar equation for C . This is a non-homogeneous seond order dif-

ferential equation in time for the amplitude A . Its solution is given as the superposition 

of the solution of the homogeneous part of the equation plus a partiular solution whih 

satisfes the non-homogeneous term in the equation (3.60). The homogeneous solution 

is given as 

] ](A (t))H 

= A os(n t) + B sin(n t) (3.61) 

with n2 = gA tanh(A h). \e assume the partiular solution given in the form 

] ](A (t))p 

= A(t)p 

os(nt) + B(t)p 

sin(nt). (3.62) 

\e impose that 

d 

{ }
] ](A (t))p 

= n -A(t)p 

sin(nt) + B(t)p 

os(nt) . (3.63)
dt 

If we substitute the form of the partiular solution, given by equation (3.62) into the 

governing equation (3.61) and take i n to aount the assumed form for 

f (A (t))p 

, given
ft 

by equation (3.63), we obtain for the amplitudes A](t)p 

and B](t)p 

the expressions 

1 1(w, n , h ) os[(n - w)t] os[(n + w)t]]A(t)p 

= + , (3.6.)
2 n n - w n + w 

1 1(w, n , h ) sin[(n - w)t] sin[(n + w)t]]B(t)p 

= + , (3.65)
2 n n - w n + w 
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where 

A F 

{
1(w, n , h ) = w 

3 [H (0) tanh(A h) -G (0)]
b2 A (3.66) 

+gA w [G (0) tanh(A h) -H (0)]} 

If we substitute these expressions for the amplitudes A](t)p 

and B](t)p 

in the assumed 

form of the partiular solution, we obtain 

1(w, n , h )
(A (t))p 

= - os(wt ). (3.67) 

w2 - n2 

As a result, we obtain for A (t) the following expression: 

1(w, A, h )] ]A (t) = A os(n t) + B sin(n t) - os(wt ) (3.68)
(w2 - n2) 

For the amplitude C we obtain the same expression as above for A (t), but with 

the index m instead of the index n. Now the potential funtion an b e written in the 

form 

1(w, A , h )] ] ]< = A os(n t) + B sin(n t) - os(wt )
(w2 - n2) 

A F A F 

-
b2 

w os(w t )
A 

G (y) osh(A (y + h)) + 

b2 

w os(w t )
A 

H (y) sinh(A (y + h)) os(kz z) 

1(w, A , h )] ]+ C os(n t) + D sin(n t) - os(wt )
2 - n2(w ) 

A F A F 

- w os(wt ) G (y) osh(A (y + h)) + w os(wt ) H (y) sinh(A (y + h)) sin(kz z) , 

b2 A b2 A 

(3.69) 

] ] ] ]whih is a funtion of the unknown onstants A , B , C and D . To obtain these 

]onstants we use the initial onditions for <(k , y , z, t ) given by equations (3..2) and 

(3..3). \e obtain 



 
 

 

 

 
 

 

 
  

 

 
 

 

 

 
 

 

 
  

 

�  
 �  

 
 

 
  

 

 

 
 

 

  
 

 
  

 

 

 
�  

 �  

 
 

 
  

 

 

 
 

 

  
 

 
  

 

 

 

19
 

1(w, A , h ) A wF A wF]A = + G (0) - H (0) tanh(A h), (3.70) 

w2 - n2 b2 A b2 A
 

]
B =0, (3.71) 

1(w, A , h ) A wF A wF]C = + G (0) - H (0) tanh(A h), (3.72) 

w2 - n2 b2 A b2 A
 

]
D =0. (3.73) 

The fnal form of the potential funtion <](k , y , z, t ) is g iv en by the equation 

AF w3 os(n t) - os(wt ) osh(A h)]< = - + w (os(n t) - os(wt ))
b2 ,2 (w2 - n2 ) osh(A h) A2
 

w sinh2(A h) A sinh2(A (y + h))
 

- os(n t) osh(A (y + h)) + wF os(wt ) os(kz z)
A2 osh(A h) b2 A2
 

AF w3 os(n t) - os(wt ) osh(A h)


+ - + w (os(n t) - os(wt ))
b2 ,2 2 - n2 A2(w ) osh(A h)
 

w sinh2(A h) A sinh2(A (y + h))
 

- os(n t) osh(A (y + h)) + wF os(wt ) sin(kz z). 

A2 osh(A h) b2 A2
 

(3.7.)
 

\e are interested in the displaement of the free-surfae r(k , z, t ), whih is given 

in terms of the p o t e n tial funtion <(k , y , z, t ) aording to the equation (3.31). Then 

the osine transform of the free-surfae displaement is given in terms of the Fourier 

transform of the potential aording to the equation 

1 �<]
r](k , z, t ) = - (x, 0, z, t ). (3.75) 

g � t 

If we apply this equation to the expression for <](k , y , z, t ) given by equation (3.7.), 

we obtain 
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AF wn 

r](k , z, t ) = (w sin(wt ) - n sin(n t)) os(kz z)2 A2 (w2 - n2 )gb 

AF wn 

+ (w sin(wt ) - n sin(n t)) os(kz z) . 

gb 

2 A2 (w2 - n2 ) 

(3.76) 

3.2 Fourier Integral Solution. 

Here we apply the inverse osine transform to the expression above for the osine trans-

form of the free-surfae displaement. The inverse osine transform is given by equation 

(3.36), and we apply it to the equation (3.76) to obtain the free-surfae displaement 

AF 1 wn 

r(x, z, t) = (w sin(wt ) - n sin(n t)) os(kx )dk os(kz z)2 A2 (w2 - n2 )gb 2t 0 

AF 1 wn 

+ (w sin(wt ) - n sin(n t)) os(kx )dk sin(kz z)2 A2gb 2t 0 

(w2 - n2 ) 

(3.77) 

The integrands in the integrals above apparently have p o l e s i n t h e omplex k plane 

for wave numbers solutions of w2 - n2 (k) = 0. As n (k) approahes ±w, we have that 

n (k) sin(wt ) approahes w sin(wt ) in the same fashion, so there is no singularity in 

the integrand and the integral is well behaved. To obtain the free-surfae displaement 

we evaluated numerially the inverse osine transforms appearing in equation (3.77). 

Results from these simulations were used to generate animations of the evolution of the 

free-surfae displaement due to the ation of the wave maker over the fuid. These 

animations are disussed in the next setion. 

3.3 Numerial Results. 

Here we s h o w results from the numerial evaluation of the inverse osine transforms ap-

pearing in the equation (3.77) for the free-surfae displaement. \e d i s p l a y t h e e v olution 

of the free-surfae displaement in time through the numerial evaluation of equation 

(3.77). \e generated animations for the evolution of the free-surfae displaement due 
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to the ation of the wave maker at x = 0. Here we disuss the examples and we give 

links for the movies assoiated with these examples. 

•	 \e onsider that the displaement of the wave maker oinides with the frst 

osine wave mode in the z diretion. The exitation frequeny is above the ut-

of frequeny for the frst osine wave mode. \ith this type of exitation, the 

only wave mode taking part in the solution is the frst osine wave mode. Sine 

the wave maker starts from rest to the harmoni motion, it exites initially all 

wave frequenies and generates a transient whih propagates along the hannel 

and is followed by a nono-hromati wave train (the osine wave mode) with 

frequeny equals to the exitation frequeny. The transient h a s a w ave f r o n t whih 

propagates with the maximum group veloity possible for this osine wave mode. 

For the depth h = 0 .1 meters, fgure 5 illustrates the maximum group veloity f o r 

the osine wave modes. The maximum group veloity possible Cg, ax 

is the group 

;veloity of the osine wave mode with kz = (n = 0). Then, for a given time 

2: 

instant t, there is no wave disturbane at positions x > Cg, axt. The transient 

for a given instant t stays in the region Cg, axt > x > C g(w)t, where Cg(w) is the 

group veloity of the exited osine wave mode at the exitation frequeny w. 

•	 \e onsider that the displaement of the wave maker oinides with the seond 

osine wave mode in the z diretion. The exitation frequeny is above t h e ut-of 

frequeny for the frst osine mode but below the ut-of frequeny for the seond 

osine mode. Again, the wave maker starts from rest to the harmoni motion. 

All wave frequenies are exited initially and a transient develops. The transient 

propagates along the hannel, and behind it we are left with only the seond osine 

wave m ode, w hih deays exponentially as we go away from the wave m aker, sine 

at this exitation frequeny the seond osine wave mode is evanesent. Again, 

the transient has a wave front w h i  h propagates with the maximum group veloity 

possible for the seond osine wave mode. 

•	 \e onsider that the displaement of the wave maker oinides with the frst 
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Figure 5: Group veloity as a funtion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 0.1 meters. The maximum group veloity for the 

frst osine wave mode (Cg, ax) is indiated in the fgure. Maximum group veloity for 

the seond osine mode also indiated in the fgure. 
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osine mode in the z diretion. The exitation frequeny is exatly at the ut-of 

frequeny. Again, the wave maker starts from rest to the harmoni motion, and 

initially all wave frequenies are exited. A transient develops and propagates 

along the hannel. The transient has a wave front whih propagates with the 

maximum group veloity possible Cg, ax 

for the frst osine wave mode. Behind 

the transient w e are left with the frst osine wave mode, sine it is the only wave 

mode exited by the wave maker. The group veloity of this wave mode at its 

ut-of frequeny is zero, so there is no energy propagation along the hannel after 

the transient part of the solution is already far from the wave maker. Sine the 

energy annot be radiated away from the wave maker, we see the wave amplitude 

growing with time lose to the wave maker. The osine wave mode resonates with 

the wave maker in this ase. 

•	 Now the wave m a k er is a liner funtion in the z diretion (F (z) = z). \e show the 

evolution of the disturbane due to the ation of the wave maker. \e onsider all 

modes that take part in the solution. \e atually onsider only a fnite numb e r 

of sine and osine wave modes. As the wavenumb e r kz or kz assoiated with 

a wave mode inreases, its amplitude dereases, so only a fnite numb e r of wave 

modes are signifant. Again, the wave maker starts from rest to the harmoni 

motion. \e h a ve initially a transient w h i  h propagates along the hannel. It has a 

wave front whih propagates with the maximum possible group veloity, whih is 

the maximum group veloity for the frst sine wave m o d e . Ahead of the wave front 

(x > Cg, axt for a given instant t, where Cg, ax 

is the maximum group veloity 

for the frst sine wave mode) we h a ve n o w aves disturbane. For a given instant t, 

the transient stays in the region Cg, axt > x > C g(w)t, where Cg(w) is the group 

veloity of the frst sine wave mode at the exitation frequeny w. Behind this 

region we have the steady state solution. 
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