Today's plan

- $1^{\text {st }}$ order system response: review
- the role of zeros
- $2^{\text {nd }}$ order system response:
- example: DC motor with inductance
- response classifications:
- overdamped
- underdamped
- undamped
- Linearization
- from pendulum equation to the harmonic oscillator

Review: step response of $1^{\text {st }}$ order systems

Step response in the s-domain

$$
\frac{a}{s(s+a)}
$$

in the time domain

$$
\left(1-\mathrm{e}^{-a t}\right) u(t) ;
$$

time constant

$$
\tau=\frac{1}{a}
$$

rise time ($10 \% \rightarrow 90 \%$)

$$
T_{r}=\frac{2.2}{a}
$$

settling time (98%)

$$
T_{s}=\frac{4}{a} .
$$

Nise Figure 4.3

Steady-state

- Note that as $t \rightarrow \infty$, the exponential decays away, and the step response tends to 1 , i.e. the value of the driving force.
- More generally, if we consider a flywheel-like viscously damped system with equation of motion expressed as $1^{\text {st }}$ order linear time-invariant ODE

$$
J \dot{\omega}(t)+b \omega(t)=f(t) \quad \text { and step excitation } \quad f(t)=F_{0} \operatorname{step}(t)
$$

[where $f(t)$ and F0 have units of torque,]

$$
\text { the step response is } \quad \omega(t)=\frac{F_{0}}{b}\left(1-\mathrm{e}^{-t / \tau}\right), \quad t>0 \quad\left(\tau=\frac{J}{b}\right)
$$

the angular velocity as $t \rightarrow \infty$ tends to $\quad \omega_{\infty}=\frac{F_{0}}{b}$

- This long-term value is known as the system's steady state
- In systems where the output physically represents a velocity, the steady state is also known as terminal velocity.

Steady state in the Laplace domain: the final value thm.

- It turns out that we can predict the steady state of a system directly in the Laplace domain by using the following property known, for obvious reasons, as the final value theorem:

$$
\lim _{t \rightarrow \infty} g(t)=\lim _{s \rightarrow 0} s G(s)
$$

which holds generally if $\mathrm{g}(\mathrm{t})$ and $\mathrm{G}(\mathrm{s})$ form a Laplace transform pair.

- In the case of the flywheel, the transfer function is $\frac{\Omega(s)}{F(s)}=\frac{1}{J s+b}$

For the step response we have $\quad F(s)=\frac{F_{0}}{s} \Rightarrow \Omega(s)=\frac{F_{0}}{s(J s+b)}$
It is easy to verify that $\quad \lim _{s \rightarrow 0} s \Omega(s)=\frac{F_{0}}{b}$
in agreement with the result for the steady state of this system in the previous page

A word on zeros

Example: compare the step response of the two systems below:

Step response without zero vs with zero

$$
\begin{aligned}
& \xrightarrow{U(s)=\frac{1}{s}} \begin{array}{l}
H_{0}(s)=\frac{1}{s+p} \\
\end{array} \begin{array}{l}
F_{0}(s) \\
\\
\Rightarrow f_{0}(t)=\frac{1}{p}\left(1-\mathrm{e}^{-p t}\right), \quad t>0 .
\end{array} \\
& \text { Please verify } \\
& \text { yourselves this } \\
& \text { partial-fraction } \\
& \text { expansion! } \\
& F(s)=s F_{0}(s)+z F_{0}(s) \\
& \Rightarrow f(t)=\frac{\mathrm{d}}{\mathrm{~d} t} f_{0}(t)+z f_{0}(t)=\mathrm{e}^{-p t}+\frac{z}{p}\left(1-\mathrm{e}^{-p t}\right), \quad t>0 .
\end{aligned}
$$

Example:
$p=0.5 ;$
$z=1.0$

Zero on the right-hand side?

Example:
$p=0.5$

The general 2nd order system

We can write the transfer function of the general $2^{\text {nd }}$-order system with unit steady state response as follows:

$$
\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}, \quad \text { where }
$$

- ω_{n} is the system's natural frequency, and
- ζ is the system's damping ratio.

The natural frequency indicates the oscillation frequency of the undamped ("natural") system, i.e. the system with energy storage elements only and without any dissipative elements. The damping ratio denotes the relative contribution to the system dynamics by energy storage elements and dissipative elements. Recall,

$$
\zeta \equiv \frac{1}{2 \pi} \frac{\text { Undamped ("natural") period }}{\text { Time constant of exponential decay }} .
$$

Depending on the damping ratio ζ, the system response is

- undamped if $\zeta=0$;
- underdamped if $0<\zeta<1$;
- critically damped if $\zeta=1$;
- overdamped if $\zeta>1$.
© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The general 2nd order system

 Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The general 2nd order system

$$
\frac{\omega_{n}^{2}}{\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}
$$

ζ	Poles	Step response
	$j \omega$	$c(t)$
0		

$$
\left[1-\cos \left(\omega_{n} t\right)\right] u(t)
$$

ω_{n}, natural oscillation frequency

$c(t)$

$\left[1-A \mathrm{e}^{-\sigma_{d} t} \cos \left(\omega_{d} t-\phi\right)\right] u(t)$
$\sigma_{d}=\zeta \omega_{n}$, decay time constant; $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$, damped oscillation frequency

Critically damped

$$
\left[\begin{array}{c}
1+K_{1} \mathrm{e}^{-\sigma_{c} t}+K_{2} t \mathrm{e}^{-\sigma_{c} t} \\
\sigma_{c}, \text { double pole }
\end{array}\right] u(t)
$$

$\zeta=1$

$\left(\right.$ Transfer function $\left.\frac{\omega_{n}^{2}}{\left(s+\omega_{n}\right)^{2}} \equiv \frac{\omega_{n}^{2}}{\left(s+\sigma_{c}\right)^{2}}\right)$
$\zeta>1$

$$
\left[1+K_{1} \mathrm{e}^{-\sigma_{1} t}+K_{2} \mathrm{e}^{-\sigma_{2} t}\right] u(t)
$$

$$
\sigma_{1,2}=\omega_{n}\left(1 \pm \sqrt{\zeta^{2}-1}\right), \text { real poles. }
$$

Nise Figure 4.11
© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The underdamped 2nd order system

The step response's Laplace transform is

$$
\frac{\omega_{n}^{2}}{\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}, \quad 0<\zeta<1
$$

$$
\frac{1}{s} \times \frac{\omega_{n}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{K_{1}}{s}+\frac{K_{2} s+K_{3}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} .
$$

We find

$$
K_{1}=\frac{1}{\omega_{n}^{2}}, \quad K_{2}=-\frac{1}{\omega_{n}^{2}}, \quad K_{3}=\frac{2 \zeta}{\omega_{n}}
$$

Substituting and applying the same method of completing squares that we did in the numerical example of the DC motor's angular velocity response, we can rewrite the laplace transform of the step response as

$$
\frac{1}{s}-\frac{\left(s+\zeta \omega_{n}\right)+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \omega_{n} \sqrt{1-\zeta^{2}}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)}
$$

Using the frequency shifting property of Laplace transforms we finally obtain the step response in the time domain as

$$
1-\mathrm{e}^{-\zeta \omega_{n} t}\left[\cos \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)\right] .
$$

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The underdamped 2nd order system

$$
\frac{\omega_{n}^{2}}{\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}, \quad 0<\zeta<1
$$

Finally, using some additional trigonometry and the definitions

$$
\sigma_{d}=\zeta \omega_{n}, \quad \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}, \quad \tan \phi=\frac{\zeta}{\sqrt{1-\zeta^{2}}}
$$

we can rewrite the step response as

$$
1-\frac{1}{\sqrt{1-\zeta^{2}}} \times \mathrm{e}^{-\sigma_{d} t} \times \cos \left(\omega_{d} t-\phi\right)
$$

The definitions above can be re-written

$$
\begin{gathered}
\zeta=\frac{\sigma_{d}}{\omega_{n}}, \\
\sqrt{1-\zeta^{2}}=\frac{\omega_{d}}{\omega_{n}}, \\
\Rightarrow \tan \theta=\frac{\omega_{d}}{\sigma_{d}}=\frac{\sqrt{1-\zeta^{2}}}{\zeta} .
\end{gathered}
$$

The underdamped 2nd order system

$$
\frac{\omega_{n}^{2}}{\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}, \quad 0<\zeta<1
$$

Finally, using some additional trigonometry and the definitions

$$
\sigma_{d}=\zeta \omega_{n}, \quad \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}, \quad \tan \phi=\frac{\zeta}{\sqrt{1-\zeta^{2}}}
$$

we can rewrite the step response as

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transients in the underdamped $2^{\text {nd }}$ order system

Peak time

Nise Figure 4.14

$$
T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}
$$

Percent overshoot (\%OS)

$$
\begin{gathered}
\% \mathrm{OS}=\exp \left(-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}\right) \times 100 \\
\Leftrightarrow \zeta=\frac{-\ln (\% \mathrm{OS} / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% \mathrm{OS} / 100)}}
\end{gathered}
$$

Settling time
(to within $\pm 2 \%$ of steady state)

$$
T_{s}=-\frac{\ln \left(0.02 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{n}} \approx \frac{4}{\zeta \omega_{n}} .
$$

(approximation valid for

$$
0<\zeta<0.9 .)
$$

Transient qualities from pole location in the s-plane

Same T_{s}.

(a)

(b)

(c)

$$
\begin{gathered}
\text { Recall } \\
\zeta=\frac{\sigma_{d}}{\omega_{n}} \\
\sqrt{1-\zeta^{2}}=\frac{\omega_{d}}{\omega_{n}} \\
\Rightarrow \tan \theta=\frac{\omega_{d}}{\sigma_{d}}=\frac{\sqrt{1-\zeta^{2}}}{\zeta}
\end{gathered}
$$

(c) John Wiley \& Sons. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Linearization

- This technique can be used to approximate a non-linear system

Nise Figure 2.48

$$
f(x) \approx f\left(x_{0}\right)+m_{a}\left(x-x_{0}\right)
$$

where

$$
m_{a}=\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=x_{0}}
$$

$$
f(x) \approx-5\left(x-\frac{\pi}{2}\right) \quad(x \approx \pi / 2)
$$

First order Taylor expansion
© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Linearizing systems: the pendulum

(a)

(c)

The equation of motion is found as

$$
J \ddot{\theta}+\frac{M g L}{2} \sin \theta=T . \quad \text { (We cannot Laplace transform!) }
$$

For small angles $\theta \approx 0$, we have

$$
\left.\sin \theta \approx \frac{\mathrm{d} \sin \theta}{\mathrm{~d} \theta}\right|_{\theta=0} \times \theta=\left.\cos \theta\right|_{\theta=0} \times \theta=1 \times \theta=\theta
$$

Therefore, the linearized equation of motion is

$$
J \ddot{\theta}+\frac{M g L}{2} \theta=T \Rightarrow J s^{2} \Theta(s)+\frac{M g L}{2} \Theta(s)=T(s) .
$$

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

MIT OpenCourseWare
http://ocw.mit.edu

2.04A Systems and Controls

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

