Goals for today

- Transfer function
- Flywheel example
- Other examples: car suspension system
- Poles and zeros in complex s-plane
- pole, zero definitions
- the significance of poles and zeros: from s-domain representation to transient characteristics

Transfer Functions

- Consider again the motor-shaft system :

$J \dot{\omega}(t)+b \omega(t)=T_{s}(t)$,
where now $T_{s}(t)$ is an arbitrary function,
but still $\omega(t=0)=0 \quad$ (no spin-down).
Proceeding as before, we can write

$$
\Omega(s)=\frac{T_{s}(s)}{J s+b} \Leftrightarrow \frac{\Omega(s)}{T_{s}(s)}=\frac{1}{J s+b} .
$$

Generally, we define the ratio

$$
\frac{\mathcal{L}[\text { output }]}{\mathcal{L}[\text { input }]}=\text { Transfer Function; in this case, } \operatorname{TF}(s)=\frac{1}{J s+b}
$$

We refer to the $(\mathrm{TF})^{-1}$ of a single element as the Impedance $Z(s)$.

Transfer Functions in block diagrams

Important: To be able to define the Transfer Function, the system ODE must be linear with constant coefficients.

Such systems are known as Linear Time-Invariant, or Linear Autonomous.

Impedances: rotational mechanical

| | Torque-
 angular
 velocity | Torque-
 angular
 displacement |
| :---: | :---: | :---: | | Impedance |
| :---: |
| $\mathbf{Z}_{M}(\mathbf{s})=\mathbf{T}(\mathbf{s}) / \boldsymbol{\theta}(\mathbf{s})$ |

(In the notes,
we sometimes
use b or B
instead of D.)

Note: The following set of symbols and units is used throughout this book: $T(t)=\mathrm{N}-\mathrm{m}$ (newton-meters), $\theta(t)=\mathrm{rad}$ (radians), $\omega(t)=\mathrm{rad} / \mathrm{s}$ (radians/second), $K=\mathrm{N}-\mathrm{m} / \mathrm{rad}$ (newtonmeters/radian), $D=\mathrm{N}-\mathrm{m}-\mathrm{s} / \mathrm{rad}$ (newton-meters-seconds/radian), $J=\mathrm{kg}-\mathrm{m}^{2}$ (kilogram-meters 2 $=$ newton-meters-seconds ${ }^{2} /$ radian).

Impedances: translational mechanical

Component	Force- velocity	Force- displacement	Impedance $Z_{M}(s)=F(s) / X(s)$

$$
f(t)=K \int_{0}^{t} v(\tau) d \tau \quad f(t)=K x(t)
$$

(In the notes,
Viscous damper

$$
f(t)=f_{v} v(t) \quad f(t)=f_{v} \frac{d x(t)}{d t}
$$ we sometimes use b or B instead of f_{v}.)

$$
f(t)=M \frac{d v(t)}{d t} \quad f(t)=M \frac{d^{2} x(t)}{d t^{2}}
$$

$M s^{2}$

Note: The following set of symbols and units is used throughout this book: $f(t)=\mathrm{N}$ (newtons), $x(t)=\mathrm{m}$ (meters), $v(t)=\mathrm{m} / \mathrm{s}$ (meters/second), $K=\mathrm{N} / \mathrm{m}$ (newtons $/$ meter), $f_{v}=$ $\mathrm{N}-\mathrm{s} / \mathrm{m}$ (newton-seconds/meter), $M=\mathrm{kg}$ (kilograms $=$ newton-seconds ${ }^{2} /$ meter).
© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Nise Table 2.4 Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Transfer Functions: On car suspension system

System ODE: $M \ddot{x}(t)+f_{v} \dot{x}+K x=b \dot{u}+K u$

$$
\xrightarrow{U(s)} \xrightarrow{\frac{f_{v} s+K}{M s^{2}+f_{v} s+K}} \xrightarrow{X(s)}
$$

Summary

- Basic Laplace transform

$$
\begin{array}{rlrl}
\mathcal{L}[f(t)] \equiv F(s) & =\int_{0-}^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t . & & \mathcal{L}[\dot{f}(t)]=s F(s)-f(0-) . \\
\mathcal{L}[u(t)] \equiv U(s)=\frac{1}{s} . & & \mathcal{L}\left[\int_{0-}^{t} f(\xi) \mathrm{d} \xi\right]=\frac{F(s)}{s} . \\
\mathcal{L}\left[\mathrm{e}^{-a t}\right]=\frac{1}{s+a} . &
\end{array}
$$

- Obtain transfer functions

$$
\text { Known: } \quad M \ddot{x}+b \dot{x}+k x=u(x)
$$

With 0 initial conditions:

$$
\left(M s^{2}+b s+k\right) X(s)=F(s)
$$

$$
\Longrightarrow \frac{X(s)}{F(s)} \equiv T F(s)=\frac{1}{M s^{2}+b s+k}
$$

Definition of poles and zeros

- Transfer function can usually be written as a numerator divided by a denominator (both are functions of s):

$$
T F(s)=\frac{N(s)}{D(s)}
$$

- Poles are all complex solutions to

$$
D(s)=0
$$

- Zeros are all complex solutions to

$$
N(s)=0
$$

Representation of poles and zeros on the s-plane

Lab assignment p. 1

- Derive the flywheel TF for one, two, three magnets, using the values of moment if inertia J and viscous damping b from the previous lab
- How many zeros and/or poles are there in the flywheel TF? Plot their location(s) on the complex plane for the case of three magnets

Lab assignment p. 2

- If you remove two of the three magnets, will the pole(s) move to the left or to the right? Explain the relationship of your answer to the change you observe in the time domain.
- Derive the step response of the flywheel in the Laplace domain

Lab assignment p. 3

- In the presence of the Instructor(s) only, connect the CD motor to the flywheel and obtain the step response with one, two, three magnets. Explain the difference based on your Laplace-domain derivation in the previous question.

MIT OpenCourseWare
|http://ocw.mit.edu

2.04A Systems and Controls

Spring 2013

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

