
Goals for today
 

– From ODE to Laplace transform 

– Laplace transform definition and properties 

– Using the Laplace transform to derive the flywheel response
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From ODE to Laplace transform /1
 

Recall the ODE we derived for the car suspension: 

¨mx+ ˙bx+ kx = ˙bu+ ku. 

We need to solve in two steps: homogeneous (with the right–hand side equal 
to zero, i.e. no input) and the particular solution for the given input. 

The homogeneous solution to an LTI ODE is easy, because it is an exponential 
function. We can denote the exponent as s, then we obtain 

 ¨mxh + ˙bxh + kxh ,= 0 x st
h(t) =  Ae . 

s2 + bs + k
 
Aest = 0 and, since we require a non–trivial 

solution (A =  0) we must have  

2 ms + bs + k .= 0  

This is called the system’s characteristic equation.
 
We will say more about its solutions later.
 

Substituting yields
 
m

�
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From ODE to Laplace transform /2
 

The particular solution is, generally, more difficult to find, because we need to
guess its form, depending on the input function and its derivatives, as they 
appear on the right–hand side. However, if the input happens to be an 

exponential function 

 u(t) =  U0e s0t, 

then we can easily guess that the particular solution (output) would be of the 
same form, i.e. 

 xp(t) =  H s0t
0U0e 

Substituting into the ODE we obtain 

 
2    bs0 + k 

ms0 + bs0 + k
 
H0U0e s0t = (bs0 + k) U0e s0t ⇒ H0 = .

ms20 + bs0 + k 

With this choice of H0, the ODE is satisfied by the particular solution 

bs0 + k  xp(t) =  U s0t
0 e .
ms2 + bs0 + k 

             

0 
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U1e s1t H1U1e s1t 
s1t s2tU1e + U2e + . . .  

U2e s2t H2U2e s2t 

s1t s2tH1U1e + H2U2e + . . .  . . .  . . .  

From ODE to Laplace transform /3
 

It was the insight of two French mathematicians, Fourier and Laplace (who 
were vicious competitors and accused each other of stealing each other’s idea) 
that the particular solution for an exponential input can be exploited in the 

case of LTI (linear and time invariant) ODE as follows: 

This is the superposition principle. Thus, if we can express any input function 
as a superposition of exponentials, then we can find the output of the system, 
also as a superposition of exponentials. This led to the idea of the Laplace and 
Fourier transforms. In this class, we consider the former only, as it is more 
appropriate for calculating transient response, i.e. for t > 0  assuming initial 

conditions are given for t = 0.  
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Laplace transform: definition
 

Given a function f (t) in the time domain we defne its 
Laplace transform F (s) as  

 +o
F (s) =  

Z
f(t)e-stdt. 

0-

We say that F (s) is the frequency—domain representation of f(t). 

The frequency variable s is a complex number: 

s = a + jw, 

where a, w are real numbers with units of frequency (i.e. sec-1  Hz). 
We will investigate the physical meaning of a, w later when we see examples of 
Laplace transforms of functions corresponding to physical systems. 
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Example 1: Laplace transform of the step function
 

Consider the step function (aka Heaviside function) 
 ½
0, t 0< , 

u(t) = 
  
1, t > 0. 

According to the Laplace transform defnition, 

Z +o Z +
st

o 

U(s) =  u(t)e - dt = 1  e-stdt = 
0 0

·
 
-



-μ

1  +o 
1  = e -st

¶¯̄ ³ ´¯ = 0 - 1 = -s ¯
0 -s-

1 
= . 

s 
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Interlude: complex numbers: what does 1/s mean?
 

Recall that s = a + jw. The real variables a, w (both in frequency units) 
are the real and imaginary parts, respectively, of s. (We denote j2 = -1.)
Therefore, we can write 

1 1 a - jw a - jw
 
= = = .
 

s a + jw (a + jw) (a - jw) a2 + w2 

Alternatively, we can represent
 jw 
the complex number s in polar form s = |s| ej¢,
 

s ¡ 1/2
where |s| = a2 + w2 is the magnitude and s |
¢  s = atan  (w/a) 

¢
 

|
the phase of s. 

¢ 

It is straightforward to derive
 a 
  

1 1 
  

¯
 1 ̄  ¯ 1 1 

= e -j¢ : 
¯
  = and = s
 s

-  s.   |s| s |s| s 
-

 

6

¯ ¯ 6 6¯ ¯
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Example 2: Laplace transform of the exponential
 

Consider the decaying exponential function beginning at t = 0  

 f(t) = e- atu(t), 

where a > 0 (note the presence of the step function in the above formula.) 

Again we apply the Laplace transform defnition, 

Z +o 

u

Z +o 

F (s) =  e -at (t)e -stdt = e -(s+a)tdt = 
0- 0
  

-μ
 

¶¯
 +  

1 )
o

1
= e-(s+a t = 0 1 = -(s+ a) 

¯ ³ ´¯ -¯
0 -(s+ a)-

1 
= . 

s+ a 
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time constant

 = 
1 
a 
, a = 1  sec  -1 

Laplace transforms of commonly used functions
 

Nise Table 2.1 

Step 

function 

(aka 
Heaviside) 
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Laplace transforms of commonly used functions
 

Polynomials
 

Ramp
 

function
 

Quadratic
 

function
 

n = 2  

Nise Table 2.1
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Laplace transforms of commonly used functions
 

Sinusoids 

Nise Table 2.1 
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Laplace transforms of commonly used functions
 

Impulse function (aka Dirac function) 

<(t) 

t 
t = 0  

It represents a pulse of 

• infnitessimally small duration; and 

• fnite energy. 

Mathematically, it is defned by the properties 

Z
<(t) =  1;  (uni

-o 

 +o 

<(t)f (t) = f  (0) 

 +o 

t  energy)  and  

Z
(sifting.) 

Nise Table 2.1 -o
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Properties of the Laplace transform 
Let F (s), F1(s), F2(s) denote the Laplace transforms of f(t), f1(t), f2(t),
 
respectively. We denote L [f(t)] = F (s), etc.
 

• Linearity  

L [K1f1(t) +  K2f2(t)] = K1F1(s) +  K2F2(s),
 
where K1, K2 are complex constants.
 

• Differentiation The diferentiation property is the one 
 

d that we’ll fnd most useful in • L 
h

f (t) = sF (s) f(0 );
dt 

i
- - solving linear ODEs with constant coefs. 

• L 

·
d2 
f (t)

¸
= s2F (s) 

dt2 
- sf  - j(0-) f(0); and 

h
dn  

• L f(t) 
i

n
= snF (s) -P n

n k=1 s
-kf (k-1)(0-).

dt

• Integration
 
  ·Z t  

L f(�)d�
0

¸
F (s) 

= . 
s -

A more complete set of Laplace transform properties 
is in Nise Table 2.2. 
We’ll learn most of these properties in later lectures. 
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Inverting the Laplace transform 

Consider
2 

F (s) =  . (1)
(s + 3)(s + 5)  

We seek the inverse Laplace transform f(t) =  L-1 [F (s)] :i.e., a function f (t) 
such that L [f (t)] = F (s). 

Let us attempt to re—write F (s) as  

2 K1 K2
F (s) =  = + . (2)

(s + 3)(s + 5)  s + 3  s + 5  

That would be convenient because we know the inverse Laplace transform of 
the 1/(s + a) function (it’s a decaying exponential) and we can also use the 
linearity theorem to fnally fnd f (t). All that’d be left to do would be to fnd 
the coefcients K1, K2. 

This is done as follows: frst multiply both sides of (2) by (s + 3).  We  fnd  

2 K2(s + 3)  
 

s= 3 2 
= K1 + =

-
 K

 1 = .= 1  
s+ 5  s + 5  

: -3 + 5  

Similarly, we fnd K2 = 1.
 

 

-
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Inverting the Laplace transform 

So we have found 

2 1 1 
F (s) =  = . 

(s + 3)(s + 5)  s + 3  
-

s + 5  

From the table of Laplace transforms (Nise Table 2.1) we know that 

·
1 L-1 

¸
-3t = e u (t)  and  

s + 3  ·
1 L -1 

¸
-5t = e u (t). 

s + 5  

Using these and the linearity theorem we obtain 
 

L -1    L -1 [F (s)] =

·
2 1 1 

=  -1 -3t = e  e -5t. 
(s + 3)(s + 5)

¸
 

L
·
s + 3  

-
s + 5

¸
 

-

The process we just followed is known as partial fraction expansion. 
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Use of the Laplace transform to solve ODEs
 

• Example: motor-shaft system from Lecture 2 (and labs)
 

J J jw(t) +  bw(t) =  Ts(t),
 

where Ts(t) =  T0u(t) (step function)
 

b and w(t = 0) = 0 (no spin—down).
 
Ts(t) w(t) 

Taking the Laplace transform of both sides, 

T0 T 1 T 1 
Js0(s) + b 0(s) =    0   

= 0
0(s) = , 

s
:

b  
³

  ́ b s((  s + 1)  s J/b)s+ 1

where   J/b is the time constant (see also Lecture 2). 

We can now apply the partial fraction expansion method to obtain 
  

T0 K1 K2 T0 1  T0 1 1
0(s) =   

b

μ
+

s   

¶
= = . 

 + 1 b s
-

 s

μ
 s + 1

¶
b

μ
s
-

s + (1/ ) 

¶
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Use of the Laplace transform to solve ODEs
 

• Example: motor-shaft system from Lecture 2 (and labs)
 

J J jw(t) +  bw(t) =  Ts(t),
 

where Ts(t) =  T0u(t) (step function)
 

b and w(t = 0) = 0 (no spin—down).
 
Ts(t) w(t) 

We have found 
T
 0 1 1 

0(s) =
b

μ
s
-

s + (1/ ) 

¶
. 

Using the linearity property and the table of Laplace transforms we obtain
 

T- 0 
w(t) =  L 1 [0(s)] = 1 e -t/r ,

b 

³
-

´

in agreement with the time—domain solution of Lecture 2. 
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