Car suspension model

Mass - spring - viscous damper system

Model

Free body diagram (no motion)

Free body diagram

force due to viscous damping

Force balance

System ODE :

(2 ${ }^{\text {nd }}$ order ordinary linear differential equation)

Equation of motion: $\Rightarrow m \frac{d^{2} x}{d t^{2}}+K x+f_{v} \dot{x}=K u+f_{v} \dot{u}$

General Linear Time-Invariant (LTI) system

$$
\begin{gathered}
a_{n} \frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+a_{n-2} \frac{d^{n} x}{d t^{n}} \cdots a_{1} \frac{d x}{d t}+a_{0} x=b_{m} \frac{d^{m} y}{d t^{m}}+b_{m-1} \frac{d^{m-1} y}{d t^{m-1}}+\cdots b_{1} \frac{d^{1} y}{d t^{1}}+b_{0} u \\
\text { nth-order Linear Ordinary Differential Equation (ODE) } \\
\text { with constant coefficients (time-invariant) }
\end{gathered}
$$

general solution:

$$
x(t)=x_{\text {homogeneous }}(t)+x_{\text {forced }}(t)
$$

\Rightarrow homogeneous solution: $y=0$ (no forcing term)
\Rightarrow forced solution: a "guess" solution for the system behavior when $y(t) \neq 0$

Homogeneous and forced solutions

Homogeneous solution:
$x(t)=C_{0}+C_{1} e^{s_{1} t}+C_{2} e^{s_{2} t}+\cdots+C_{n} e^{s_{n} t}$
where in general
$s_{i}=\sigma_{i}+j \omega \quad$ (complex number)

Commonly used input functions

Sinusoidal
function
$f(t)= \begin{cases}0, & t<0 ; \\ \sin (\omega t), & t \geq 0 .\end{cases}$
$=\sin (\omega t) \operatorname{step}(t)$

Ramp function
$\operatorname{ramp}(t)= \begin{cases}0, & t<0 ; \\ t, & t \geq 0 .\end{cases}$
$=t \operatorname{step}(t)$

$1^{\text {st }}$ order system

$$
\begin{gathered}
\text { miv }+b v=f(t) \\
\text { mass } \underset{\substack{\text { viscous } \\
\text { damping }}}{\text { force }}
\end{gathered}
$$

Impulse response:
equivalent to setting an initial condition $v(t=0)$

$$
\begin{aligned}
& v(t=0)=v_{0} \\
& v(t)=v_{0} \mathrm{e}^{-t / \tau}, \quad t \geq 0 \\
& \text { time constant } \quad \tau=\frac{M}{b}
\end{aligned}
$$

Step response:
$\mathrm{f}(\mathrm{t})$ is the "step function" (or Heaviside function)

$$
f(t)=F_{0} \operatorname{step}(t)=\left\{\begin{array}{ll}
0, & t<0 ; \\
F_{0}, & t \geq 0 .
\end{array} \quad v(t)=\frac{F_{0}}{b}\left(1-\mathrm{e}^{-t / \tau}\right), \quad t \geq 0\right.
$$

$$
v(t=0)=0
$$

$1^{\text {st }}$ order system: step response

Nise Figure 4.3

Figure © John Wiley \& Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Mass - spring - viscous damper system

How is this different than the car suspension system?

Model

Force balance

System ODE

($2^{\text {nd }}$ order ordinary linear differential equation)

$$
M \ddot{x}(t)+f_{v} \dot{x}(t)+K x(t)=f(t)
$$

Equation of motion

Figure © John Wiley \& Sons. All rights reserved. This content is excluded from our Creative

$2^{\text {nd }}$ order system: step response

Mechanical system components: translation

- Mass

- Damper (friction)
- viscous

- Component input: force $f(t)$
- Component output: position $x(t)$
- Component ODE (Newton's law): $\quad M \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}} \equiv M \ddot{x}(t)=f(t)$
- Component input: force $f(t)$
- Component output: position $x(t)$
- Component ODE:

$$
f_{v} \dot{x}(t)=f(t)
$$

- Coulomb
\rightarrow Component ODE:
$f_{c} \operatorname{sgn}[\dot{x}(t)]=f(t)$
- drag

Component ODE:
$f_{d}|\dot{x}(t)| \dot{x}(t)=f(t)$

- Spring (compliance)

- Component input: force $f(t)$
- Component output: position $x(t)$
- Component ODE (Hooke's law): $K x(t)=f(t)$

MIT OpenCourseWare
|http://ocw.mit.edu

2.04A Systems and Controls

Spring 2013

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

