Today's goal

- Root Locus examples and how to apply the rules
- single pole
- single pole with one zero
- two real poles
- two real poles with one zero
- three real poles
- three real poles with one zero
- Extracting useful information from the Root Locus
- transient response parameters
- limit gain for stability

Root Locus definition

- Root Locus is the locus on the complex plane of closed-loop poles as the feedback gain is varied from 0 to ${ }^{\infty}$.

$$
\left(\frac{X(s)}{Y(s)}\right)_{\mathrm{OL}}=\frac{1}{s+2}
$$

$$
\left(\frac{X(s)}{Y(s)}\right)_{\mathrm{CL}}=\frac{K}{s+2+K}
$$

As K varies from 0 to ∞

Root-locus sketching rules

- Rule 1: \# branches = \# poles
- Rule 2: always symmetric with respect to the real axis
- Rule 3: real-axis segments are to the left of an odd number of realaxis finite poles/zeros

Root Locus

Root Locus

Root-locus sketching rules

- Rule 4: begins at poles, ends at zeros

$$
\left(\frac{X(s)}{Y(s)}\right)_{\mathrm{CL}}=\frac{K}{s+(K+2)}
$$

$\binom{$ closed-loop }{ pole }$=-(K+2) \rightarrow-\infty, \quad$ as $\quad K \rightarrow \infty$

$$
\left(\frac{X(s)}{Y(s)}\right)_{\mathrm{CL}}=\frac{K(s+5)}{(K+1) s+(5 K+2)}
$$

$\binom{$ closed-loop }{ pole }$=-\frac{5 K+2}{K+1} \rightarrow-5, \quad$ as $\quad K \rightarrow \infty$

We say that this TF has a "zero at infinity"

Root Locus

Root Locus sketching rules

- Rule 5: Real-axis intercept and angle of asymptote

$$
\begin{aligned}
\sigma_{\mathrm{a}} & =\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }-\# \sum \text { finite zeros }} \\
\theta_{\mathrm{a}} & =\frac{(2 m+1) \pi}{\# \text { finite poles }-\# \sum \text { finite zeros }}
\end{aligned}
$$

Root Locus sketching rules

- Rule 6: Real axis breakaway and break-in points σ_{b}

$$
\text { Solve } \sum_{n} \frac{1}{\sigma_{\mathrm{b}}-z_{n}}=\sum_{q} \frac{1}{\sigma_{\mathrm{b}}-p_{q}}
$$

Root Locus sketching rules

- Rule 7: Imaginary axis crossings

Solve $K G\left(j \omega_{\mathrm{x}}\right)=-1$

What else is the Root Locus telling us

- Gain = product of distances to the poles

The zeros are "pulling" the Root Locus

- Because of Rule 4
- Therefore, adding a zero makes the response
- faster
- stable

Root Locus

Root Locus

Practice 1: Sketch the Root Locus

© John Wiley \& Sons. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Practice 2:
 Are these Root Loci valid? If not, correct them

MIT OpenCourseWare
http://ocw.mit.edu

2.04A Systems and Controls

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

