2.035: Midterm Exam - Part 2 (Take home) Spring 2007

My education was dismal. I went to a school for mentally disturbed teachers.

Woody Allen

INSTRUCTIONS:

- Do not spend more than 4 hours.
- Please give reasons justifying each (nontrivial) step in your calculations.
- You may use
(i) the notes you took in class,
(ii) any other handwritten notes you may have made in your own handwriting,
(iii) any handouts I gave out including the bound set of notes, and
(iv) Chapters 1, 2 and 3 only of the textbook by Knowles.
- You should not use any other portions of Knowles' book (not even the appendices).
- No other sources are to be used.
- Your completed solutions are due no later than 11:00 AM on Thursday April 5.
- Please include, on the first page of your solutions, a signed statement confirming that you adhered to all of the instruction here especially the time limit and the permitted resources.

Problem 1: Consider the set V of all 2×2 skew symmetric matrices

$$
\boldsymbol{x}=\left(\begin{array}{cc}
0 & x_{12} \\
x_{21} & 0
\end{array}\right), \quad x_{12}=-x_{21},
$$

with addition and multiplication by a scalar defined in the "natural way".
a) Show that V is a vector space.
b) Give an example of a set of 2 linearly dependent vectors in V , and an example of 2 linearly independent vectors in V .
c) What is the dimension of V ?
d) If \boldsymbol{x} and \boldsymbol{y} are two vectors in V , show that

$$
\boldsymbol{x} \cdot \boldsymbol{y}=x_{12} y_{12}+x_{21} y_{21}
$$

is a proper definition of a scalar product on V . From hereon assume that the vector space V has been made Euclidean with this scalar product.
e) Find an orthonormal basis for V .
f) Let \boldsymbol{A} be the transformation defined by

$$
\boldsymbol{A} \boldsymbol{x}=\left(\begin{array}{cc}
0 & 2 x_{12} \\
2 x_{21} & 0
\end{array}\right) \quad \text { for all vectors } \quad \boldsymbol{x} \in \mathrm{V}
$$

Show that \boldsymbol{A} is a tensor.
g) Show that the tensor \boldsymbol{A} is symmetric.
h) Is \boldsymbol{A} singular or nonsingular?
i) Calculate the eigenvalues of \boldsymbol{A}.

Problem 2: Consider the 3-dimensional Euclidean vector space V which is comprised of all polynomials of degree ≤ 2; a typical vector in V has the form

$$
\boldsymbol{x}=x(t)=c_{o}+c_{1} t+c_{2} t^{2} .
$$

Addition and multiplication by a scalar are defined in the "natural way". The scalar product between two vectors \boldsymbol{x} and \boldsymbol{y} is defined as

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\int_{-1}^{1} x(t) y(t) d t
$$

Determine an orthonormal basis for V. (Hint: First find any basis for V and then use the GramSchmidt process described in Problem 1.17 of Knowles.)

Problem 3: Let \boldsymbol{A} be a symmetric positive definite tensor on a n-dimensional vector space V . Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the eigenvalues of \boldsymbol{A} where the eigenvalues are ordered according to $0<\alpha_{1} \leq$ $\alpha_{2} \ldots \leq \alpha_{n}$. Show that the smallest eigenvalue

$$
\alpha_{1}=\min (\boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x})
$$

where the minimization is taken over all unit vectors $\boldsymbol{x} \in \mathrm{V}$. (Hint: Work using the components of \boldsymbol{A} and \boldsymbol{x} in a principal basis of \boldsymbol{A}.)

Show similarly that the largest eigenvalue

$$
\alpha_{n}=\max (\boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x})
$$

where the maximization is taken over all unit vectors $\boldsymbol{x} \in \mathrm{V}$.

Problem 4: If \mathbf{A} is an arbitrary nonsingular tensor, show that

$$
\left(\boldsymbol{A}^{-1}\right)^{T}=\left(\boldsymbol{A}^{T}\right)^{-1}
$$

Problem 5: Give an example of a tensor \boldsymbol{A} (that is NOT the identity tensor \boldsymbol{I}) which has the property

$$
\boldsymbol{A}=\boldsymbol{A}^{2}=\boldsymbol{A}^{3}=\boldsymbol{A}^{4}=\ldots
$$

Hint: Think geometrically.

Problem 6: Let \boldsymbol{c} and \boldsymbol{d} be two distinct non-zero vectors belonging to a 3-dimensional Euclidean vector space. Show (geometrically by drawing arrows or some other way) that one can always find a unit vector \boldsymbol{x} such that $(\boldsymbol{c} \cdot \boldsymbol{x})(\boldsymbol{d} \cdot \boldsymbol{x})>0$; and that one can always find some other unit vector \boldsymbol{x} such that $(\boldsymbol{c} \cdot \boldsymbol{x})(\boldsymbol{d} \cdot \boldsymbol{x})<0$.

Let \boldsymbol{C} be the symmetric tensor defined by

$$
C=\boldsymbol{I}+\boldsymbol{c} \otimes \boldsymbol{d}+\boldsymbol{d} \otimes \boldsymbol{c} .
$$

Show (using the result of Problem 3 or otherwise) that the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of \boldsymbol{C} have the property that

$$
\lambda_{1}<0, \quad \lambda_{2}=0, \quad \lambda_{3}>0 .
$$

(Remark: This result is the key to showing the Ball and James Theorem mentioned in class when we were discussing material microstructures.)

