2.035: Midterm Exam - Part 1
 Spring 2007
 SOLUTION

PROBLEM 1:

a) A vector space is a set V of elements called vectors together with operations of addition and multiplication by a scalar, where these operations must have the following properties:
(A) Corresponding to every pair of vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$ there is a vector in V , denoted by $\boldsymbol{x}+\boldsymbol{y}$, and called the sum of \boldsymbol{x} and \boldsymbol{y}, with the following properties:
(1) $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$;
(2) $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathrm{V}$;
(3) there is a unique vector in V , denoted by \boldsymbol{o} and called the null vector, with the property that $\boldsymbol{x}+\boldsymbol{o}=\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathrm{V}$; and
(4) corresponding to every vector $\boldsymbol{x} \in \mathrm{V}$ there is a unique vector in V , denoted by $-\boldsymbol{x}$ with the property that $\boldsymbol{x}+(-\boldsymbol{x})=\boldsymbol{o}$.
(B) Corresponding to every real number $\alpha \in \mathbb{R}$ and every vector $\boldsymbol{x} \in \mathrm{V}$ there is a vector in V , denoted by $\alpha \boldsymbol{x}$, and called the product of α and \boldsymbol{x}, with the following properties:
(5) $\alpha(\beta \boldsymbol{x})=(\alpha \beta) \boldsymbol{x}$ for all $\alpha, \beta \in \mathbb{R}$ and all $\boldsymbol{x} \in \mathrm{V}$;
(6) $\alpha(\boldsymbol{x}+\boldsymbol{y})=\alpha \boldsymbol{x}+\alpha \boldsymbol{y}$ for all $\alpha \in \mathbb{R}$ and all $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$;
(7) $(\alpha+\beta) \boldsymbol{x}=\alpha \boldsymbol{x}+\beta \boldsymbol{x}$ for all $\alpha, \beta \in \mathbb{R}$ and all $\boldsymbol{x} \in \mathrm{V}$; and
(8) $1 \boldsymbol{x}=\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathrm{V}$.
b) A set of vectors $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{n}\right\}$ is said to be linearly independent if the only scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ for which

$$
\alpha_{1} \boldsymbol{f}_{1}+\alpha_{2} \boldsymbol{f}_{2} \ldots+\alpha_{n} \boldsymbol{f}_{n}=\boldsymbol{o}
$$

are $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$.
c) If a vector space V contains a linearly independent set of $n(>0)$ vectors but contains no linearly independent set of $n+1$ vectors we say that the dimension of V is n.
d) If V is a n-dimensional vector space then any set of n linearly independent vectors is called a basis for V.
e) If $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{n}\right\}$ is a basis for an n-dimensional vector space V , then any vector $\boldsymbol{x} \in \mathrm{V}$ can be expressed in the form

$$
\boldsymbol{x}=\xi_{1} \boldsymbol{f}_{1}+\xi_{2} \boldsymbol{f}_{2}+\ldots+\boldsymbol{\xi}_{n} \boldsymbol{f}_{n}
$$

where the set of scalars $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ is unique and are called the components of \boldsymbol{x} in the basis $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{n}\right\}$.
f) To every pair of vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$ we associate a real number denoted by $\boldsymbol{x} \cdot \boldsymbol{y}$ and called the scalar product of \boldsymbol{x} and \boldsymbol{y} provided that this product has the following properties:
(9) $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$;
(10) $(\boldsymbol{x}+\boldsymbol{y}) \cdot \boldsymbol{z}=\boldsymbol{x} \cdot \boldsymbol{z}+\boldsymbol{y} \cdot \boldsymbol{z}$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathrm{V}$;
(11) $(\alpha \boldsymbol{x}) \cdot \boldsymbol{y}=\alpha(\boldsymbol{x} \cdot \boldsymbol{y})$ for all $\alpha \in \mathbb{R}$ and all vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$; and
(12) $\boldsymbol{x} \cdot \boldsymbol{x}>0$ for all vectors $\boldsymbol{x} \neq \boldsymbol{o}$ in V .
g) The real number denoted by $|\boldsymbol{x}-\boldsymbol{y}|$ and defined as $|\boldsymbol{x}-\boldsymbol{y}|=((\boldsymbol{x}-\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y}))^{1 / 2}$ is called the distance between the vectors \boldsymbol{x} and \boldsymbol{y}.
h) If $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ is a basis for an n-dimensional vector space and if

$$
\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j, \\
1 & \text { if } & i=j
\end{array} \quad i, j=1,2, \ldots n\right.
$$

we say that $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ is an orthonormal basis.
i) A linear transformation \boldsymbol{A} on a vector space V is a transformation that assigns to each vector $\boldsymbol{x} \in \mathrm{V}$ a unique vector in V which we denote by $\boldsymbol{A} \boldsymbol{x}$ with the properties:
(13) $\boldsymbol{A}(\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{A} \boldsymbol{y}$ for all vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$; and
(14) $\boldsymbol{A}(\alpha \boldsymbol{x})=\alpha(\boldsymbol{A} \boldsymbol{x})$ for every $\alpha \in \mathbb{R}$ and every vector $\boldsymbol{x} \in \mathrm{V}$.
j) Let S be a subset of a vector space V. Suppose further that S itself is in fact a vector space on its own right under the same operations of addition and scalar multiplication as in V . Then S is said to be a subspace of V . Finally, suppose in addition that $\boldsymbol{A} \boldsymbol{x} \in \mathrm{S}$ for all $\boldsymbol{x} \in \mathrm{S}$. Then we say that S is an invariant subspace of \boldsymbol{A}.
k) The set N of all vectors \boldsymbol{x} for which $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{o}$ is called the null space of \boldsymbol{A}.
$\ell)$ A linear transformation \boldsymbol{A} is said to be singular if there is a vector $\boldsymbol{x} \neq \boldsymbol{o}$ for which $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{o}$.
m) The n^{2} real numbers $A_{i j}$ defined by

$$
A_{i j}=\boldsymbol{e}_{j} \cdot \boldsymbol{A} \boldsymbol{e}_{i}
$$

are called the components of the linear transformation \boldsymbol{A} in the basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$.
n) A scalar valued function ϕ defined on the set of all linear transformations is said to be a scalar invariant if $\phi\left(\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}\right)=\phi(\boldsymbol{A})$ for every linear transformation \boldsymbol{A} and all orthogonal linear transformations \boldsymbol{Q}.

PROBLEM 2:

a) Consider the set V of all 2×2 matrices \boldsymbol{x} of the form

$$
\boldsymbol{x}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right)
$$

where x_{1} and x_{2} range over all real numbers; let

$$
\boldsymbol{o}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

be the null vector; and define addition, $\boldsymbol{x}+\boldsymbol{y}$, and scalar multiplication, $\alpha \boldsymbol{x}$, in the natural way by

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right)+\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{1}
\end{array}\right)=\left(\begin{array}{ll}
x_{1}+y_{1} & x_{2}+y_{2} \\
x_{2}+y_{2} & x_{1}+y_{1}
\end{array}\right), \quad \alpha\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right)=\left(\begin{array}{ll}
\alpha x_{1} & \alpha x_{2} \\
\alpha x_{2} & \alpha x_{1}
\end{array}\right) .
$$

One can verify that all of the requirements (1)-(8) of Problem 1 are satisfied by these operations, and moreover, that $\boldsymbol{x}+\boldsymbol{y}$ and $\alpha \boldsymbol{x}$ are both in V when $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$ and $\alpha \in \mathbb{R}$. Thus V is a vector space.
b) Consider the following two vectors \boldsymbol{f}_{1} and \boldsymbol{f}_{2} :

$$
\boldsymbol{f}_{1}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad \boldsymbol{f}_{2}=\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

One can readily verify that if $\alpha_{1} \boldsymbol{f}_{1}+\alpha_{2} \boldsymbol{f}_{2}=\boldsymbol{o}$, then necessarily $\alpha_{1}+2 \alpha_{2}=0$ and $2 \alpha_{1}+\alpha_{2}=0$ which in turn implies that $\alpha_{1}=\alpha_{2}=0$. Thus $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ is a linearly independent set of vectors.
c) Consider the following three vectors $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{x}$,

$$
\boldsymbol{f}_{1}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad \boldsymbol{f}_{2}=\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right), \quad \boldsymbol{x}=\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right) .
$$

where \boldsymbol{x} is an arbitrary vector in V . One can readily verify that if $\alpha_{1} \boldsymbol{f}_{1}+\alpha_{2} \boldsymbol{f}_{2}+\alpha_{3} \boldsymbol{x}=\boldsymbol{o}$ then necessarily $\alpha_{1}+2 \alpha_{2}+x_{1} \alpha_{3}=0$ and $2 \alpha_{1}+\alpha_{2}+x_{2} \alpha_{3}=0$. Observe that the choice

$$
\alpha_{1}=\frac{1}{3}\left(2 x_{2}-x_{1}\right), \quad \alpha_{2}=\frac{1}{3}\left(2 x_{1}-x_{2}\right), \quad \alpha_{3}=-1
$$

satisfies these two scalar equations. Thus if $\alpha_{1} \boldsymbol{f}_{1}+\alpha_{2} \boldsymbol{f}_{2}+\alpha_{3} \boldsymbol{x}=\boldsymbol{o}$ this does not require that all the α 's vanish and so $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{x}\right\}$ is a linearly dependent set of vectors. Recall that $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ is a linearly independent set of vectors. Thus the dimension of V is 2 .
d) Since V is a 2 -dimensional vector space and since the set of vectors $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ is linearly independent, it follows that $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ is a basis for V .
e) Consider the basis $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ and let \boldsymbol{x} be an arbitrary vector in V. Then one can readily verify that

$$
\boldsymbol{x}=\xi_{1} \boldsymbol{f}_{1}+\xi_{2} \boldsymbol{f}_{2} \quad \text { where } \quad \xi_{1}=\frac{1}{3}\left(2 x_{2}-x_{1}\right) \quad \text { and } \quad \xi_{2}=\frac{1}{3}\left(2 x_{1}-x_{2}\right)
$$

are the components of \boldsymbol{x} in the basis $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$.
f) Corresponding to any two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}$, where

$$
\boldsymbol{x}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{1}
\end{array}\right),
$$

tentatively define their scalar product as

$$
\boldsymbol{x} \cdot \boldsymbol{y}=x_{1} y_{1}+x_{2} y_{2} .
$$

One can verify that this definition satisfies all of the requirement (9)-(12) of Problem 1 and therefore is in fact a legitimate definition of a scalar product.
g) The distance between the two vectors

$$
\boldsymbol{x}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{1}
\end{array}\right)
$$

is

$$
|\boldsymbol{x}-\boldsymbol{y}|=((\boldsymbol{x}-\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y}))^{1 / 2}=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right)^{1 / 2} .
$$

h) Consider the two vectors

$$
e_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Observe that $\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}=0,\left|\boldsymbol{e}_{1}\right|=\left|\boldsymbol{e}_{2}\right|=1$ and so $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ forms an orthonormal basis for V .
i) Consider a transformation \boldsymbol{A} that takes the vector

$$
\boldsymbol{x}=\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right) \quad \text { into the vector } \quad \boldsymbol{A} \boldsymbol{x}=\left(\begin{array}{ll}
x_{2} & x_{1} \\
x_{1} & x_{2}
\end{array}\right)
$$

One can verify that the requirements (13), (14) of Problem 1 are satisfied, and moreover that $\boldsymbol{A} \boldsymbol{x} \in \mathrm{V}$ for all $\boldsymbol{x} \in \mathrm{V}$. Therefore \boldsymbol{A} is a linear transformation.
j) Consider the set S of all vectors \boldsymbol{x} of the form

$$
\boldsymbol{x}=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)
$$

where x ranges over all real numbers. Clearly S is a subset of V . Moreover, one can verify that S itself is a vector space on its own right under the same operations of addition and scalar multiplication as in V . Thus S is a subspace of V . Furthermore, observe that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}$ for all vectors $\boldsymbol{x} \in \mathrm{S}$, so that in particular $\boldsymbol{A} \boldsymbol{x} \in \mathrm{S}$ for all $\boldsymbol{x} \in \mathrm{S}$. Thus S is an invariant subspace of \boldsymbol{A}. (In fact it is a one-dimensional invariant subspace associated with the eigenvalue +1).
k) From item (i) we see that if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{o}$ then necessarily $\boldsymbol{x}=\boldsymbol{o}$. Thus the null space of \boldsymbol{A} is comprised of a single vector, the null vector: $\mathrm{N}=\{\boldsymbol{o}\}$.
$\ell)$ As noted in the preceding item, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{o}$ implies that necessarily $\boldsymbol{x}=\boldsymbol{o}$. Therefore \boldsymbol{A} is nonsingular.
m) Observe from the definitions of $\boldsymbol{A}, \boldsymbol{e}_{1}$ and \boldsymbol{e}_{2} that $\boldsymbol{A} \boldsymbol{e}_{1}=\boldsymbol{e}_{2}$ and $\boldsymbol{A} \boldsymbol{e}_{2}=\boldsymbol{e}_{1}$. Thus the components of \boldsymbol{A} in the basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ are

$$
\begin{array}{ll}
A_{11}=\boldsymbol{e}_{1} \cdot \boldsymbol{A} \boldsymbol{e}_{1}=\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}=0, & A_{12}=\boldsymbol{e}_{1} \cdot \boldsymbol{A} \boldsymbol{e}_{2}=\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{1}=1, \\
A_{22}=\boldsymbol{e}_{2} \cdot \boldsymbol{A} \boldsymbol{e}_{2}=\boldsymbol{e}_{2} \cdot \boldsymbol{e}_{1}=0, & A_{21}=\boldsymbol{e}_{2} \cdot \boldsymbol{A} \boldsymbol{e}_{1}=\boldsymbol{e}_{2} \cdot \boldsymbol{e}_{2}=1 .
\end{array}
$$

n) Consider the scalar-valued function $\phi(\boldsymbol{A})=\operatorname{det} \boldsymbol{A}$ defined for all linear transformations \boldsymbol{A}. Then for any linear transformation \boldsymbol{A} and any orthogonal transformation \boldsymbol{Q} we have $\phi\left(\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}\right)=\operatorname{det}\left(\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}\right)=\operatorname{det}(\boldsymbol{Q}) \operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{Q}^{T}\right)=\operatorname{det}(\boldsymbol{Q}) \operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{Q})=(\pm 1)^{2} \operatorname{det} \boldsymbol{A}=$ $\operatorname{det} \boldsymbol{A}$. Thus the function $\phi(\boldsymbol{A})=\operatorname{det} \boldsymbol{A}$ has the property that $\phi\left(\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}\right)=\phi(\boldsymbol{A})$ for every linear transformation \boldsymbol{A} and all orthogonal linear transformations \boldsymbol{Q}. Thus $\operatorname{det} \boldsymbol{A}$ is a scalar invariant of \boldsymbol{A}.

