2.035: Midterm Exam - Part 1 Spring 2007 SOLUTION

PROBLEM 1:

- a) A vector space is a set V of elements called vectors together with operations of addition and multiplication by a scalar, where these operations must have the following properties:
 - (A) Corresponding to every pair of vectors $x, y \in V$ there is a vector in V, denoted by x + y, and called the sum of x and y, with the following properties:
 - (1) $\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathsf{V}$;
 - (2) $\boldsymbol{x} + (\boldsymbol{y} + \boldsymbol{z}) = (\boldsymbol{x} + \boldsymbol{y}) + \boldsymbol{z}$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathsf{V};$
 - (3) there is a unique vector in V, denoted by \boldsymbol{o} and called the null vector, with the property that $\boldsymbol{x} + \boldsymbol{o} = \boldsymbol{x}$ for all $\boldsymbol{x} \in V$; and
 - (4) corresponding to every vector $x \in V$ there is a unique vector in V, denoted by -x with the property that x + (-x) = o.
 - (B) Corresponding to every real number $\alpha \in \mathbb{R}$ and every vector $\boldsymbol{x} \in V$ there is a vector in V, denoted by $\alpha \boldsymbol{x}$, and called the product of α and \boldsymbol{x} , with the following properties:
 - (5) $\alpha(\beta \boldsymbol{x}) = (\alpha \beta) \boldsymbol{x}$ for all $\alpha, \beta \in \mathbb{R}$ and all $\boldsymbol{x} \in \mathsf{V}$;
 - (6) $\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \alpha \boldsymbol{y}$ for all $\alpha \in \mathbb{R}$ and all $\boldsymbol{x}, \boldsymbol{y} \in \mathsf{V}$;
 - (7) $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$ for all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{x} \in \mathsf{V}$; and
 - (8) $1\boldsymbol{x} = \boldsymbol{x}$ for all $\boldsymbol{x} \in V$.
- b) A set of vectors $\{f_1, f_2, \ldots, f_n\}$ is said to be *linearly independent* if the only scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$ for which

$$\alpha_1 \boldsymbol{f}_1 + \alpha_2 \boldsymbol{f}_2 \dots + \alpha_n \boldsymbol{f}_n = \boldsymbol{o}$$

are $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$

- c) If a vector space V contains a linearly independent set of n (> 0) vectors but contains no linearly independent set of n + 1 vectors we say that the *dimension* of V is n.
- d) If V is a n-dimensional vector space then any set of n linearly independent vectors is called a basis for V.
- e) If $\{f_1, f_2, \dots, f_n\}$ is a basis for an *n*-dimensional vector space V, then any vector $x \in V$ can be expressed in the form

$$oldsymbol{x} = \xi_1 oldsymbol{f}_1 + \xi_2 oldsymbol{f}_2 + \ldots + oldsymbol{\xi}_n oldsymbol{f}_n$$

where the set of scalars $\xi_1, \xi_2, \ldots, \xi_n$ is unique and are called the *components* of x in the basis $\{f_1, f_2, \ldots, f_n\}$.

- f) To every pair of vectors $x, y \in V$ we associate a real number denoted by $x \cdot y$ and called the *scalar product* of x and y provided that this product has the following properties:
 - (9) $\boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{y} \cdot \boldsymbol{x}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathsf{V};$
 - (10) $(\boldsymbol{x} + \boldsymbol{y}) \cdot \boldsymbol{z} = \boldsymbol{x} \cdot \boldsymbol{z} + \boldsymbol{y} \cdot \boldsymbol{z}$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathsf{V};$
 - (11) $(\alpha \boldsymbol{x}) \cdot \boldsymbol{y} = \alpha(\boldsymbol{x} \cdot \boldsymbol{y})$ for all $\alpha \in \mathbb{R}$ and all vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathsf{V}$; and
 - (12) $\boldsymbol{x} \cdot \boldsymbol{x} > 0$ for all vectors $\boldsymbol{x} \neq \boldsymbol{o}$ in V.
- g) The real number denoted by $|\boldsymbol{x} \boldsymbol{y}|$ and defined as $|\boldsymbol{x} \boldsymbol{y}| = ((\boldsymbol{x} \boldsymbol{y}) \cdot (\boldsymbol{x} \boldsymbol{y}))^{1/2}$ is called the *distance* between the vectors \boldsymbol{x} and \boldsymbol{y} .
- h) If $\{e_1, e_2, \ldots, e_n\}$ is a basis for an *n*-dimensional vector space and if

$$\boldsymbol{e}_i \cdot \boldsymbol{e}_j = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j \end{cases} \qquad i, j = 1, 2, \dots n,$$

we say that $\{e_1, e_2, \ldots, e_n\}$ is an orthonormal basis.

- i) A linear transformation A on a vector space V is a transformation that assigns to each vector $x \in V$ a unique vector in V which we denote by Ax with the properties:
 - (13) A(x + y) = Ax + Ay for all vectors $x, y \in V$; and
 - (14) $\mathbf{A}(\alpha \mathbf{x}) = \alpha(\mathbf{A}\mathbf{x})$ for every $\alpha \in \mathbb{R}$ and every vector $\mathbf{x} \in \mathsf{V}$.
- j) Let S be a subset of a vector space V. Suppose further that S itself is in fact a vector space on its own right under the same operations of addition and scalar multiplication as in V. Then S is said to be a subspace of V. Finally, suppose in addition that $Ax \in S$ for all $x \in S$. Then we say that S is an *invariant subspace* of A.
- k) The set N of all vectors x for which Ax = o is called the *null space* of A.
- ℓ) A linear transformation A is said to be *singular* if there is a vector $x \neq o$ for which Ax = o.
- m) The n^2 real numbers A_{ij} defined by

$$A_{ij} = e_j \cdot A e_i$$

are called the *components* of the linear transformation A in the basis $\{e_1, e_2, \ldots, e_n\}$.

n) A scalar valued function ϕ defined on the set of all linear transformations is said to be a *scalar* invariant if $\phi(\mathbf{Q}\mathbf{A}\mathbf{Q}^T) = \phi(\mathbf{A})$ for every linear transformation \mathbf{A} and all orthogonal linear transformations \mathbf{Q} .

PROBLEM 2:

a) Consider the set V of all 2×2 matrices \boldsymbol{x} of the form

$$oldsymbol{x} = \left(egin{array}{cc} x_1 & x_2 \ x_2 & x_1 \end{array}
ight)$$

where x_1 and x_2 range over all real numbers; let

$$\boldsymbol{o} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

be the null vector; and define addition, x + y, and scalar multiplication, αx , in the natural way by

$$\begin{pmatrix} x_1 & x_2 \\ x_2 & x_1 \end{pmatrix} + \begin{pmatrix} y_1 & y_2 \\ y_2 & y_1 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 & x_2 + y_2 \\ x_2 + y_2 & x_1 + y_1 \end{pmatrix}, \qquad \alpha \begin{pmatrix} x_1 & x_2 \\ x_2 & x_1 \end{pmatrix} = \begin{pmatrix} \alpha x_1 & \alpha x_2 \\ \alpha x_2 & \alpha x_1 \end{pmatrix}.$$

One can verify that all of the requirements (1)–(8) of Problem 1 are satisfied by these operations, and moreover, that $\boldsymbol{x} + \boldsymbol{y}$ and $\alpha \boldsymbol{x}$ are both in V when $\boldsymbol{x}, \boldsymbol{y} \in \mathsf{V}$ and $\alpha \in \mathbb{R}$. Thus V is a vector space.

b) Consider the following two vectors f_1 and f_2 :

$$\boldsymbol{f}_1 = \left(egin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}
ight), \qquad \boldsymbol{f}_2 = \left(egin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}
ight).$$

One can readily verify that if $\alpha_1 \mathbf{f}_1 + \alpha_2 \mathbf{f}_2 = \mathbf{o}$, then necessarily $\alpha_1 + 2\alpha_2 = 0$ and $2\alpha_1 + \alpha_2 = 0$ which in turn implies that $\alpha_1 = \alpha_2 = 0$. Thus $\{\mathbf{f}_1, \mathbf{f}_2\}$ is a linearly independent set of vectors.

c) Consider the following three vectors f_1, f_2, x ,

$$oldsymbol{f}_1 = \left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight), \qquad oldsymbol{f}_2 = \left(egin{array}{cc} 2 & 1 \ 1 & 2 \end{array}
ight), \qquad oldsymbol{x} = \left(egin{array}{cc} x_1 & x_2 \ x_2 & x_1 \end{array}
ight).$$

where \boldsymbol{x} is an arbitrary vector in V. One can readily verify that if $\alpha_1 \boldsymbol{f}_1 + \alpha_2 \boldsymbol{f}_2 + \alpha_3 \boldsymbol{x} = \boldsymbol{o}$ then necessarily $\alpha_1 + 2\alpha_2 + x_1\alpha_3 = 0$ and $2\alpha_1 + \alpha_2 + x_2\alpha_3 = 0$. Observe that the choice

$$\alpha_1 = \frac{1}{3}(2x_2 - x_1), \quad \alpha_2 = \frac{1}{3}(2x_1 - x_2), \quad \alpha_3 = -1$$

satisfies these two scalar equations. Thus if $\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 x = o$ this does not require that all the α 's vanish and so $\{f_1, f_2, x\}$ is a linearly dependent set of vectors. Recall that $\{f_1, f_2\}$ is a linearly independent set of vectors. Thus the dimension of V is 2.

- d) Since V is a 2-dimensional vector space and since the set of vectors $\{f_1, f_2\}$ is linearly independent, it follows that $\{f_1, f_2\}$ is a basis for V.
- e) Consider the basis $\{f_1, f_2\}$ and let x be an arbitrary vector in V. Then one can readily verify that

$$x = \xi_1 f_1 + \xi_2 f_2$$
 where $\xi_1 = \frac{1}{3}(2x_2 - x_1)$ and $\xi_2 = \frac{1}{3}(2x_1 - x_2)$

are the components of \boldsymbol{x} in the basis $\{\boldsymbol{f}_1, \boldsymbol{f}_2\}$.

f) Corresponding to any two vectors $\boldsymbol{x}, \boldsymbol{y} \in V$, where

$$oldsymbol{x} = \left(egin{array}{cc} x_1 & x_2 \ x_2 & x_1 \end{array}
ight), \qquad oldsymbol{y} = \left(egin{array}{cc} y_1 & y_2 \ y_2 & y_1 \end{array}
ight),$$

tentatively define their scalar product as

$$\boldsymbol{x} \cdot \boldsymbol{y} = x_1 y_1 + x_2 y_2.$$

One can verify that this definition satisfies all of the requirement (9)-(12) of Problem 1 and therefore is in fact a legitimate definition of a scalar product.

g) The distance between the two vectors

$$oldsymbol{x} = \left(egin{array}{cc} x_1 & x_2 \ x_2 & x_1 \end{array}
ight), \qquad oldsymbol{y} = \left(egin{array}{cc} y_1 & y_2 \ y_2 & y_1 \end{array}
ight)$$

is

$$|\boldsymbol{x} - \boldsymbol{y}| = \left((\boldsymbol{x} - \boldsymbol{y}) \cdot (\boldsymbol{x} - \boldsymbol{y}) \right)^{1/2} = \left((x_1 - y_1)^2 + (x_2 - y_2)^2 \right)^{1/2}$$

h) Consider the two vectors

$$\boldsymbol{e}_1 = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight), \qquad \boldsymbol{e}_2 = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight).$$

Observe that $e_1 \cdot e_2 = 0$, $|e_1| = |e_2| = 1$ and so $\{e_1, e_2\}$ forms an orthonormal basis for V.

i) Consider a transformation \boldsymbol{A} that takes the vector

$$oldsymbol{x} = \left(egin{array}{cc} x_1 & x_2 \ x_2 & x_1 \end{array}
ight) \qquad ext{into the vector} \quad oldsymbol{A}oldsymbol{x} = \left(egin{array}{cc} x_2 & x_1 \ x_1 & x_2 \end{array}
ight)$$

One can verify that the requirements (13), (14) of Problem 1 are satisfied, and moreover that $Ax \in V$ for all $x \in V$. Therefore A is a linear transformation.

j) Consider the set S of all vectors \boldsymbol{x} of the form

$$\boldsymbol{x} = \left(egin{array}{cc} x & x \ x & x \end{array}
ight)$$

where x ranges over all real numbers. Clearly S is a subset of V. Moreover, one can verify that S itself is a vector space on its own right under the same operations of addition and scalar multiplication as in V. Thus S is a subspace of V. Furthermore, observe that Ax = x for all vectors $x \in S$, so that in particular $Ax \in S$ for all $x \in S$. Thus S is an *invariant subspace* of A. (In fact it is a one-dimensional invariant subspace associated with the eigenvalue +1).

- k) From item (i) we see that if Ax = o then necessarily x = o. Thus the null space of A is comprised of a single vector, the null vector: $N = \{o\}$.
- ℓ) As noted in the preceding item, Ax = o implies that necessarily x = o. Therefore A is nonsingular.

m) Observe from the definitions of A, e_1 and e_2 that $Ae_1 = e_2$ and $Ae_2 = e_1$. Thus the components of A in the basis $\{e_1, e_2\}$ are

$$A_{11} = e_1 \cdot A e_1 = e_1 \cdot e_2 = 0, \qquad A_{12} = e_1 \cdot A e_2 = e_1 \cdot e_1 = 1,$$
$$A_{22} = e_2 \cdot A e_2 = e_2 \cdot e_1 = 0, \qquad A_{21} = e_2 \cdot A e_1 = e_2 \cdot e_2 = 1.$$

n) Consider the scalar-valued function $\phi(\mathbf{A}) = \det \mathbf{A}$ defined for all linear transformations \mathbf{A} . Then for any linear transformation \mathbf{A} and any orthogonal transformation \mathbf{Q} we have $\phi(\mathbf{Q}\mathbf{A}\mathbf{Q}^T) = \det(\mathbf{Q}\mathbf{A}\mathbf{Q}^T) = \det(\mathbf{Q})\det(\mathbf{A})\det(\mathbf{Q}^T) = \det(\mathbf{Q})\det(\mathbf{A})\det(\mathbf{Q}) = (\pm 1)^2 \det \mathbf{A} = \det \mathbf{A}$. Thus the function $\phi(\mathbf{A}) = \det \mathbf{A}$ has the property that $\phi(\mathbf{Q}\mathbf{A}\mathbf{Q}^T) = \phi(\mathbf{A})$ for every linear transformation \mathbf{A} and all orthogonal linear transformations \mathbf{Q} . Thus det \mathbf{A} is a scalar invariant of \mathbf{A} .