2.035: Midterm Exam - Part 2 (Take home) Spring 2004

" Examinations are formidable even to the best prepared, for the greatest fool may ask more than the wisest person may answer."

Charles Caleb Colton (1780-1832)

INSTRUCTIONS:

- Do not spend more than 3 hours.
- Please give reasons justifying each (nontrivial) step in your calculations.
- You may use the notes you took in class, Chapters 1, 2 and 3 of the text, and any handouts originating from me.
- No other sources are to be used (not even the appendices of the text).
- Your completed solutions are due no later than 9:30 AM on Wednesday April 7.
- Please include, on the first page of your solutions, a signed statement confirming that you adhered to the time limit and the permitted resources.

Problem 1: (Knolwes 3.24) A tensor \boldsymbol{T} is symmetric, orthogonal and positive definite. Determine T.

Problem 2: (Essentially Knowles 1.18) Let R be the 3 -dimensional Euclidean vector space of polynomials of degree not exceeding two, where the scalar product between two vectors $\boldsymbol{f}=f(t)$ and $\boldsymbol{g}=g(t)$ is defined by

$$
\boldsymbol{f} \cdot \boldsymbol{g}=\int_{-1}^{1} f(t) g(t) d t
$$

i) Show that $\boldsymbol{f}_{1}=1, \boldsymbol{f}_{2}=t, \boldsymbol{f}_{3}=t^{2}$ is a basis for R .
ii) Find an orthonormal basis for R.

Problem 3: (Based on Knowles 3.17) Let \boldsymbol{A} and \boldsymbol{B} be two symmetric tensors whose matrices of components in an orthonormal basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ are

$$
[A]=\left(\begin{array}{cc}
1 & 4 \\
2 & 3
\end{array}\right) \quad \text { and } \quad[B]=\left(\begin{array}{cc}
0 & 2 \\
3 & 1
\end{array}\right) \quad \text { respectively }
$$

i) Do \boldsymbol{A} and \boldsymbol{B} have a common principal basis?
ii) Determine a principal basis for \boldsymbol{A}.

Problem 4: (Essentially Knowles 3.18) If a tensor \boldsymbol{P} has the property $\boldsymbol{P}^{T}=\boldsymbol{I}$ show that
i) \boldsymbol{P} is nonsingular,
ii) $\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{I}$, and
iii) \boldsymbol{P} is orthogonal, i.e. that \boldsymbol{P} preserves length $(\Leftrightarrow|\boldsymbol{P} \boldsymbol{x}|=|\boldsymbol{x}|$ for all vectors $\boldsymbol{x})$.

Problem 5: (Essentially Knowles 3.10, 3.26). Let \boldsymbol{A} be a skew-symmetric tensor on a finite dimensional Euclidean vector space.
i) If \boldsymbol{A} has a real eigenvalue α, show that $\alpha=0$.
ii) Show that $\boldsymbol{I}+\boldsymbol{A}$ and $\boldsymbol{I}-\boldsymbol{A}$ are both nonsingular tensors.
iii) Show that $\boldsymbol{I}+\boldsymbol{A}$ and $\boldsymbol{I}-\boldsymbol{A}$ commute, i.e. that $(\boldsymbol{I}+\boldsymbol{A})(\boldsymbol{I}-\boldsymbol{A})=(\boldsymbol{I}+\boldsymbol{A})(\boldsymbol{I}-\boldsymbol{A})$.
iv) Show that $(\boldsymbol{I}-\boldsymbol{A})(\boldsymbol{I}+\boldsymbol{A})^{-1}$ is an orthogonal tensor.

Problem 6: (Essentially Knowles 2.18) Let \boldsymbol{A} be a symmetric tensor on a n-dimensional Euclidean vector space. Suppose that \boldsymbol{A} has distinct eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and a corresponding set of orthonormal eigenvectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$.
i) For any positive integer m, show that \boldsymbol{A}^{m} (defined as $\underbrace{\boldsymbol{A} \boldsymbol{A} \ldots \boldsymbol{A}}_{\mathrm{m} \text { times }}$) has eigenvalues $\alpha_{1}^{m}, \alpha_{2}^{m}, \ldots, \alpha_{n}^{m}$ and corresponding eigenvectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$.
ii) Let $p(x)=\sum_{k=0}^{n} c_{k} x^{k}$ be an arbitrary polynomial of degree n where the c 's are real numbers. Let \boldsymbol{P} be the tensor defined by $\boldsymbol{P}=\boldsymbol{P}(\boldsymbol{A})=\sum_{k=0}^{n} c_{k} \boldsymbol{A}^{k}$ where $\boldsymbol{A}^{0}=\boldsymbol{I}$. Show that the eigenvalues of \boldsymbol{P} are $p\left(\alpha_{1}\right), p\left(\alpha_{2}\right), \ldots, p\left(\alpha_{n}\right)$ and that the corresponding eignvectors are $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$.
iii) Consider the special case where $p(x)$ is the characteristic polynomial of \boldsymbol{A}, i.e. $p(x)=$ $\operatorname{det}[\boldsymbol{A}-x \boldsymbol{I}]$. Show that that the corresponding tensor $\boldsymbol{P}(\boldsymbol{A})$ is the null tensor \boldsymbol{O}.

