# 2.035: Midterm Exam - Part 1 (In class) Spring 2004 

1.5 hours<br>You may use the notes you took in class but no other sources.<br>Please give reasons justifying each (nontrivial) step in your calculations.

Problem 1: Let R be a 3 -dimensional Euclidean vector space and let $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right\}$ be an arbitrary (not necessarily orthonormal) basis for R . Define a set of vectors $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ by

$$
\left.\begin{array}{l}
\boldsymbol{e}_{1}=\boldsymbol{f}_{1}, \\
\boldsymbol{e}_{2}=\boldsymbol{f}_{2}+c_{21} \boldsymbol{e}_{1}, \\
\boldsymbol{e}_{3}=\boldsymbol{f}_{3}+c_{31} \boldsymbol{e}_{1}+c_{32} \boldsymbol{e}_{2} .
\end{array}\right\}
$$

i) Calculate the values of the scalars $c_{21}, c_{31}$ and $c_{32}$ that makes $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ a mutually orthogonal set of vectors.
ii) Is the set $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ linearly independent?
iii) Does $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ form an orthonormal basis for R ?

Problem 2: Let R be the Euclidean vector space consisting of "trigonometric polynomials", a typical vector $\boldsymbol{p}$ having the form

$$
\boldsymbol{p}=p(t)=\sum_{n=0}^{2} \alpha_{n} \cos n t \quad \text { where the } \alpha^{\prime} s \text { span all real numbers. }
$$

The natural operations of addition and multiplication by a scalar are in force. The scalar product between two vectors $\boldsymbol{p}$ and $\boldsymbol{q}$ is taken to be

$$
\boldsymbol{p} \cdot \boldsymbol{q}=\int_{0}^{2 \pi} p(t) q(t) d t
$$

Let $\boldsymbol{A}$ be the tensor that carries a vector $\boldsymbol{p}=p(t)$ into its second derivative:

$$
\boldsymbol{A} \boldsymbol{p}=p^{\prime \prime}(t)
$$

i) Is $\boldsymbol{A}$ singular or nonsingular?
ii) Is $\boldsymbol{A}$ symmetric?
iii) Determine the eigenvalues of $\boldsymbol{A}$.

Problem 3: Let R be an arbitrary 3-dimensional vector space and let $\boldsymbol{A}$ be a linear transformation on R. (Note that R might not be Euclidean and $\boldsymbol{A}$ might not be symmetric.) Suppose that $\boldsymbol{A}$ has three real eigenvalues $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and suppose that they are distinct: $\alpha_{1} \neq \alpha_{2} \neq \alpha_{3} \neq \alpha_{1}$. Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ be the corresponding eigenvectors.
i) Show that any pair of these eigenvectors, e.g. $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$, is a linearly independent pair of vectors.
ii) Next show that $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$ is a linearly independent set of vectors.

