

=
$$L = \frac{1}{6}ML^2Q^2 + \frac{1}{2}m\left[r^2 + r^2Q^2\right] + g\left(\frac{ML}{2} + mr\right)CorQ$$

= Recall from Virtual work = D Green-potential

Green-pot

Green-pot

= $\mu m\left[rQ^2 + \frac{1}{2}m\left[r^2 + r^2Q^2\right] + g\sin Q\right]$. Signs:

= D Equation of mulion

$$\frac{d}{dt} \frac{\partial L}{\partial Q} - \frac{\partial L}{\partial Q} = G_Q = D\left(\frac{1}{3}ML^2 + mr^2\right)Q^2 + 2mr^2Q^2 + g^2 + mr^2\sin Q + g^2 + mr^2\sin Q + g^2 + g^2$$

Example illustrates frame independente of Lograngian approach

Start of procession angle

Assume Spring is unstratched for
$$v = 0$$

Torsional

Spring (N)

disk

DOF: 2x6-5-4-3

Which system is halonomic

Lagrangian equation at motion applies apply $L(\psi, \psi, \psi, \psi)$. Forces - Constraint forces are ideal. Active forces are potential $\longrightarrow Qq = c$

T=T beam disk to beam disk spring,
$$T = T + T + V + V + V$$

$$\frac{1}{2} = \frac{1}{2} m |V_c|^2 + \frac{1}{2} \omega \frac{beam}{2} = \omega$$

Consider a frame which is principal fix for beam. $= D T_{beam} = \frac{1}{2} m \left[\left(\frac{1}{2} \sin v \right)^2 + \left(\frac{1}{2} v \right)^2 \right]$ $+ \frac{1}{2} \left[I_{55} \left(-\dot{V} \left(65 v \right)^2 + I_{55} \left(-\dot{V} \right)^2 + I_{17} \left(\dot{V} \sin v \right)^2 \right]$ $I_{55}^b = 0 \quad (Stender hearm) \quad I_{77}^b = I_{55}^b = I_{25}^b ml^2$ $T_{560}^b = \frac{1}{2} ml^2 \left(I_{50}^b v \dot{V} + \dot{V}^2 \right)$ $T_{560}^b = \frac{1}{2} ml^2 \left(I_{50}^b v \dot{V} + \dot{V}^2 \right)$ $T_{560}^b = \frac{1}{2} ml^2 \left(I_{50}^b v \dot{V} + \dot{V}^2 \right)$ $T_{560}^b = \frac{1}{2} ml^2 \left(I_{50}^b v \dot{V} + \dot{V}^2 \right)$

(\(\xi_1 \xi_2 \)