Page 1 for this lecture is not available.

Session 10

$$
\Rightarrow \quad L=\frac{1}{6} M L^{2} \dot{\varphi}^{2}+\frac{1}{2} m\left[\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right]+g\left(\frac{M L}{2}+m r\right) \cos \varphi
$$

$=$ Recall from virtual walk $\Rightarrow Q_{1 / e}^{\text {nem-potentiol }}=F l \sin \alpha$

$$
a_{r}^{\text {nom }-\dot{p o t}}=\mu m|r \ddot{\varphi}+2 \dot{r} \dot{\varphi}+g \sin \varphi| \cdot \operatorname{sig}(t)
$$

\rightarrow Equation of motion

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{\varphi}}-\frac{\partial L}{\partial \varphi}=G_{\varphi} \Rightarrow\left(\frac{1}{3} m L^{2}+m r^{2}\right) \ddot{\varphi}+2 m r \dot{\varphi} \dot{\varphi}+g\left(\frac{M L}{2}+m \eta\right) \sin \varphi=F l \mathcal{E}_{\varphi} \\
& \frac{d}{d t} \frac{\partial L}{\partial r}-\frac{\partial L}{\partial r}=G_{i r} \Rightarrow m \dot{r}^{2}-m r \dot{\varphi}^{2}-m q \cos \varphi=\gamma \cdot m|r \ddot{\varphi}+2 \dot{r} \ddot{\varphi}+g \sin \varphi| \cdot \operatorname{sign}(\dot{r})
\end{aligned}
$$

EXAMPLE illustrates frameindependente of Lagrangian approach

Torsional
spring (k)

$$
\text { \# DEF: } 2 \times 6-5-4=3
$$

systems is halloromic
Lagengian equation of motion applies

$$
\text { apply } \angle(\psi, v, \varphi \dot{\psi}, \dot{v}, \dot{\psi})
$$

- Forces - Constraint forces are ideal
- Active forces are potential $\rightarrow Q_{q}=0$

$$
\begin{gathered}
T=T^{\text {beum }}+T^{\text {disk }} ; V=V^{\text {beam }}+V^{\text {dock }}+V^{\text {Sprung }} \\
T^{\text {beacon }}=\frac{1}{2} m\left|V_{c}\right|^{2}+\frac{1}{2} \underline{\omega}^{\text {beam }}=c \underline{W}^{\text {begum }}
\end{gathered}
$$

Consider a frame which is principal fix for beam.

$$
\begin{aligned}
& \left.\Rightarrow T_{\text {beam }}=\frac{1}{2} m\left[\left(\frac{1}{2} \sin \right\rangle \dot{\psi}\right)^{2}+\left(\frac{1}{2} \dot{\nu}\right)^{2}\right] \\
& +\frac{1}{2}\left[I_{\xi \xi}^{b}(-\dot{\psi} \cdot \cos \nu)^{2}+I_{\xi \xi}^{b}(-i)^{2}+\Sigma_{12}^{b}(\dot{\psi} \sin \nu)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma^{\text {bear }}=\frac{1}{6} \min ^{2}\left(\sin ^{2} \dot{\nu} \dot{\nu}^{2}+\dot{\nu}^{2}\right) \\
& \Gamma^{d j k k}=\frac{1}{2} M \left\lvert\, V V^{2}+\frac{1}{\alpha}\left(\underline{\alpha}^{d o k}\right)^{T} \underline{\underline{E_{c}}} \underline{\omega}^{d i j k}\right.
\end{aligned}
$$

Use previousen frame shitted to B

$$
\begin{aligned}
\Rightarrow T_{\text {disk }} & =\frac{1}{2} M\left[(L \sin \nu \dot{\varphi})^{2}+(L \nu)^{2}\right] \\
& +\frac{1}{2}\left[I_{\xi \xi}^{d}(-\dot{\varphi}-\dot{\varphi} \operatorname{Cov} \nu)+I_{\xi \xi}^{d}(-\dot{\nu})^{2}+I_{\eta l}^{d}\left(\dot{\psi} \dot{S}_{n} \nu\right)^{2}\right]
\end{aligned}
$$

NOte: $\Sigma_{\xi \xi}^{d}=\frac{1}{2} M R^{2}, \Sigma_{\xi \xi}^{d}=L_{\eta \eta}^{d}=\frac{1}{4} M R^{2}$

$$
\begin{aligned}
\Rightarrow & T^{d j s k}=\frac{1}{2} M\left[l^{2}+\frac{1}{4} R^{2}\right] \sin ^{2} \nu^{4}+\frac{1}{2} M\left(L^{2}+R^{2}\right) \nu^{2}+\frac{1}{4} M R^{2}(\dot{\varphi}+\dot{\varphi} \cos \nu)^{2} \\
V & =-m g \frac{L}{2} \cos p-M g L \cos \nu+\frac{1}{2} k \nu^{2} \\
L & =T-V=\cdots
\end{aligned}
$$

\Rightarrow Eq of mation $\frac{d}{d t}\left(\frac{\partial L}{\partial q}\right)-\frac{\partial L}{\partial q}=0 \quad \varphi, \dot{\psi}$ are called cydic Ceardinate

$$
y=\psi, \nu, \varphi
$$

Consenvertion of $\leftarrow \frac{d}{d t}\left(\frac{\pi}{\partial \psi}\right)-\frac{\partial \varphi^{\circ}}{\partial 4}=0$
\square
Jymmetry
angnuluer momenturm

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial \nu}=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial \psi}=0
\end{aligned}
$$

(ignarablie)
\downarrow
Layrranyian docsn't depund on thum explicity

