2.032 DYNAMICS

Problem Set No. 7

Out: Wednesday, November 3, 2004

Due: Wednesday, November 10, 2004 at the beginning of class

Problem 1

The force F acts horizontally at the end of the four-member linkage shown below. The linkage is described by the generalized coordinates $\xi_1 = \theta_1$, $\xi_2 = \theta_2$, $\xi_3 = \theta_3$, $\xi_4 = \theta_4$. Find the generalized forces Ξ_1 , Ξ_2 conjugate to the generalized coordinates ξ_1 , ξ_2 and due to the force F. You may *not* assume that θ_1 , θ_2 , θ_3 , θ_4 are small angles.

Courtesy of Prof. T. Akylas. Used with permission.

Problem 2

A pendulum consists of a rod of length L, mass m, and centroidal moment of inertia $\frac{1}{12}mL^2$ with a frictionless pivot at one end. The pendulum is suspended from a flywheel of radius R and mass M which can rotate about the fixed point O, as shown below.

(a) Select a complete and independent set of generalized coordinates. (Please define these coordinates *clearly*.)

(b) Derive the Lagrangian equations of motion without making any approximations (small angles, etc.).

Courtesy of Prof. T. Akylas. Used with permission.

Problem 3

Consider a bead of mass m sliding without friction on a rotating ring with radius r and negligible mass, as shown in the figure. The ring rotates about the vertical axis with constant angular velocity Ω . Derive the equation of motion of the bead using D'Alembert's principle.

