Problem Set No. 7

Out: Wednesday, November 3, 2004
Due: Wednesday, November 10, 2004 at the beginning of class

Problem 1

The force F acts horizontally at the end of the four-member linkage shown below. The linkage is described by the generalized coordinates $\xi_{1}=\theta_{1}, \xi_{2}=\theta_{2}, \xi_{3}=\theta_{3}, \xi_{4}=\theta_{4}$. Find the generalized forces Ξ_{1}, Ξ_{2} conjugate to the generalized coordinates ξ_{1}, ξ_{2} and due to the force F. You may not assume that $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are small angles.

Problem 2

A pendulum consists of a rod of length L, mass m, and centroidal moment of inertia $\frac{1}{12} m L^{2}$ with a frictionless pivot at one end. The pendulum is suspended from a flywheel of radius R and mass M which can rotate about the fixed point O , as shown below.
(a) Select a complete and independent set of generalized coordinates. (Please define these coordinates clearly.)
(b) Derive the Lagrangian equations of motion without making any approximations (small angles, etc.).

Courtesy of Prof. T. Akylas. Used with permission.

Problem 3

Consider a bead of mass m sliding without friction on a rotating ring with radius r and negligible mass, as shown in the figure. The ring rotates about the vertical axis with constant angular velocity Ω. Derive the equation of motion of the bead using D'Alembert's principle.

