Problem Set No. 5

Out: Wednesday, October 13, 2004
Due: Wednesday, October 20, 2004 at the beginning of class

Problem 1

Consider the motion of a car, as shown in the figure below. (Out of the four wheels only two are visible.) The mass of the body of the car is m_{3}, and each wheel has radius r and mass m. The coefficient of static friction is μ_{0} i.e., the tangential force between the wheel and the ground is never greater than μ_{0} times the normal force. The torque transmitted from the body of the car to the rear wheel set is M_{0}.
(a) Assuming pure rolling, use the work-energy principle to find the acceleration of the car.
(b) What is the largest M_{0} for which the car does not slip?

Problem 2 (adapted from PhD Qualifying Exam 2003)
A circular ring of radius a is fixed to a vertical shaft $A B$ at O. The plane of the ring is inclined at 60° to the vertical as shown below so that the included angle COB is 60°, where C is the center of the ring. A particle P of mass m is free to slide without friction on the ring. The position of the particle is measured by the included angle OCP, denoted θ as shown. The shaft is driven at constant angular velocity Ω.

Find in terms of θ and $\dot{\theta}$ the velocity of P .

Problem 3 (adapted from Crandall et al., 4-20)
A rigid cone with apex half angle α rolls steadily without slip on a horizontal surface so that it precesses about the Z axis at a constant angular rate Ω. The cone has mass M and principal moments of inertia I_{1}, I_{1}, and I_{3} at the tip.
(a) Determine the angular momentum of the cone.
(b) What forces and torques are required to maintain this motion?

Figure by OCW. After problem 4-20 in Crandall, S. H., et al. Dynamics of Mechanical and Electromechanical Systems. Malabar, FL: Krieger, 1982.

Problem 4

The heavy disk of mass M and centroidal principal moments of inertia $I_{1}=I_{2}, I_{3}$ rolls without slipping in contact with the inclined plane, as shown below. A ball joint at O holds the end of the massless shaft in place. The shaft makes angle β with the inclined plane. Derive an expression for the kinetic energy of the disk.

Courtesy of Prof. T. Akylas. Used with permission.

