Problem Set No. 4

Out: Wednesday, October 6, 2004
Due: Wednesday, October 13, 2004 at the beginning of class

Problem 1

A rigid circular cylinder of radius a has a hole of radius $\frac{1}{2} a$ cut out. Assume that the cylinder rolls without slipping on the floor.
(i) Compute the kinetic energy and the potential energy of the cylinder using the generalized coordinate θ defined below.
(ii) By suitably approximating the kinetic and potential energy expressions in (i), deduce the frequency of small rocking oscillations of the cylinder about the equilibrium position $\theta=0$.
(iii) Use the potential to plot trajectories qualitatively on the $(\theta, \dot{\theta})$ phase plane.

Problem 2

A billiard ball, initially at rest, is given a sharp impulse by a cue. The cue is held horizontally a distance h above the centerline. The ball leaves the cue with a speed v_{0} and eventually acquires a final speed of $\frac{9}{7} v_{0}$. Show that $h=\frac{4}{5} R$, where R is the radius of the ball.

Problem 3

Determine the principal centroidal moments of inertia for the following homogeneous bodies:
(a) a sphere of radius R,
(b) a circular cone of height h and base radius R.

Problem 4 (adapted from Crandall et al., 4-14)
The uniform rod of length L and mass M is pivoted, without friction, to the shaft OA, which revolves in fixed bearings at the steady rate ω_{0}. The rod is constrained to remain in a plane through OA which rotates with the shaft.
(a) Formulate an equation of motion for $\theta(t)$.
(b) For each value of ω_{0} there is at least one stationary angle θ_{0} which the rod can maintain while steadily precessing at the rate ω_{0}. Find all stationary configurations as functions of ω_{0}.

