Problem Set No. 2

Out: Wednesday, September 22, 2004
Due: Wednesday, September 29, 2004 at the beginning of class

Problem 1

Show that for any 3×3 skew-symmetric matrix \boldsymbol{A}, there exists a 3 -dimensional vector ω such that for any three-dimensional vector \boldsymbol{x},

$$
A x=\omega \times x .
$$

Problem 2

Consider the coupled pendula shown in the figure below. Both rods are massless, with point masses m attached to their ends. Both joints shown in the figure are frictionless. The external force F encloses a fixed angle γ with the line of the pendulum shown. The masses never collide. The constant of gravity is g.
Questions:

- Identify the constraints.
- Determine the number of degrees of freedom.
- Find the equations of motion for ϕ and ψ.
- Find the constraint forces.
- Is the system conservative? (Why?)

Problem 3

Determine the angular velocity of a cone rolling on the $X Y$-plane without slipping, as shown.

Figure by OCW.

Problem 4 (adapted from Ginsberg, 3-22)

The disk rotates at ω_{1} about its axis, and the rotation rate of the forked shaft is ω_{2}. Both rates are constant. Determine the velocity and acceleration of an arbitrarily selected point B on the perimeter. Describe the results in terms of components relative to the $x y z$ axes in the sketch.

Figure by OCW. After 3-22 in Ginsberg, J. H. Advanced Engineering Dynamics. 2nd ed. New York: Cambridge University Press, 1998.

