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Wave Radiation Problem


ζ3(t) =  ̄ζ3 cos(ωt) 

ζ̇3(t) =  −ω ̄ζ3 sin(ωt) 
¨ ζ3(t) =  −ω2 ̄ζ3 cos(ωt) 

x 

zω,λ, Vp, Vg 

2a 

~n 

Total: P (t) =  −ρ ∂φ − ρgz Hydrodynamic: Pd(t) =  −ρ ∂φ = P̄d cos(ωt− ψ)∂t ∂t 

Hydrodynamic Force: Z Z  
¯F3(t) =  − 

SB 

PdnzdS = F3 cos(ωt− ψ) 

¯ ¯= F3 cos ψ cos(ωt) +  F3 sin ψ sin(ωt) 
¯ ¯F3 cos ψ F3 sin ψ 

= − 
ζ3ω2 

ζ̈  
3(t) − 

ζ3ω
ζ̇ 
3(t)¯ ¯


= −A33ζ̈  
3(t) − B33ζ̇ 

3(t) 

A33: Added mass; B33: Wave damping 



Physical Meaning of Wave Damping 
ζ3(t) =  ̄

ω,λ, Vp, Vg z ζ̈  
3(t) =  −ω2ζ̄3 cos(ωt) 

x 
2a 

Energy 
flux out 
EVg Control Volume Energy 

flux out 

Averaged power into the fluid by the body: 

ζ3 cos(ωt) 

ζ̇3(t) =  −ω ̄ζ3 sin(ωt) 

EVg 

Z T 

Ēin =
1 {−F3(t)} ζ̇ 

3(t)dt 
T 0 Z T n o 

=
1 

A33ζ̈  
3(t)ζ̇ 

3(t) +  B33ζ̇ 
3(t)ζ̇ 

3(t) dt = B33(ζ̄3ω)
2/2 

T 0 

Averaged energy flux out of the control volume: Ēflux  = 2VgE ∼ 2Vga 2 

dĒConservation of energy: ≡ Ēin − Ēflux  = 0dt 

B33 ∼ (a/ζ̄3)2 > 0 

• B33 =0 if a=0 corresponding to ω = ∞, 0 



Mathematical Formulation of Heave Radiation Problem 
z 

ζ3(t) = cos(ωt) 
y 

Φtt + gΦz = 0  η(t) = −Φt/gx 

~n 
Radiation condition: 
Generated waves 
must propagate away 
from the body 

Hydrodynamic Pressure: 

Radiation Force: 

Radiation Moment: 


Deep water condition: ∇2Φ(x, y, z, t) = 0  ∇Φ → z → −∞  0 as  

Pd(x, y, z, t) = −ρΦt R 
F~R(t) = − Pd ~ndsSBR 
M~R(t) = − 

SB 
Pd(~x × ~n)ds 



Frequency-Domain Formulation of Heave Radiation Problem


¯
ζ3 = 1  
y 

−ω2φ3 + gφ3z = 0  η̄ = −iωφ3/gx 

Radiation condition ~n Deep water condition: 

Let: 
ζ3(t) = cosωt = <{eiωt} 
Φ(~x, t) = <{φ3(~x)eiωt}
η(x, y, t) = <{η̄(x, y)eiωt} 

Pd(~x, t) = <{pd(~x)eiωt} 
F~R( f~eiωt

M~R(

t) = <{ 

~ iω

}
tmet) = <{ } 

pd = −iρωφ3(~x) R 
f~ = − 

SB 
pd ~ndS R 

~ = − 
SB 
pd(~ × ~n)dSm x

∇2φ3(~x) = 0  ∇φ3 → 0 as  z → −∞  

R 
f3R = iρω 

SB 
φ3n3ds 

F3R(t) = −A33ζ̈  
3(t)− B33ζ̇(t) = <{[ω2A33 − iωB33]eiωt} 

Thus, n R o n R o 
A33 = < i

ω
ρ φ3n3ds , B33 = −= iρ φ3n3dsSB SB n R o n R o 

A13 = < i
ω
ρ 

SB 
φ3n1ds , B13 = −= iρ 

SB 
φ3n1ds 

A23, B23, ..., A63, B63 

• Aij and Bij are symmetric, i.e. Aij = Aji, Bij =Bji, i=1, …, 6; j=1, …, 6 
• Aij and Bij are functions of frequency ω 



|ζ3 |
A 
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Examples: Added Mass at Low Frequency


At low frequencies, i.e. ω 0:→ 

d2 Φ 0 as  ω 0dt2 ∼ ω2 → → 

Thus, the free surface boundary conditoin becomes: Φz=0 

(1) slender vertical circular cylinder 

Surge added mass 
m11 = ρπR2h 
Wave damping =0 

(2) slender ship with a semi-circle 
cross section 

Sway added mass

= ρ πR

2

m11 2 L 
Wave damping =0 



Examples: Added Mass at High Frequency


At high frequencies, i.e. ω →∞: 
d2 Φ 
dt2 ∼ ω2 →∞  as ω →∞  

Thus, the free surface boundary conditoin becomes: Φ=0 

Slender ship with a semi-circle cross section: 

= ρ πR
2 

Heave added mass: m33 2 L 

Wave damping =0 



Hydrostatic Restoring Effect in Body Motion 
ζ3(t) 

Wetted body surface: S0 SB(t) =  S0 + ∆S(t) 

~n

z 

x 

t = 0  

Hydrostatic pressure: Ps = −ρgz 
Hydrostatic restoring effect R R R 

Hydrostatic force: F~s = − 
SB (t) 

Ps ~nds = − 
S0 
Ps ~nds− 

∆S(t) Ps ~nds 

Balanced by other forces at equilibrium R 
¯Fs3(t) =  ρg dV ol  = Fs3 − ρgSwlζ3(t)V ol  

Swl :Water plane surface area of the body 
C33 = ρgSwl :Hydrostatic restoring coefficient (i.e. spring constant)  R R R 

~Hydrostatic moment:Ms = − 
SB (t) 

Ps(~x× ~n)ds = − Ps(~x× ~n)ds− 
∆S(t) Ps(~x× ~n)ds

S0 

Hydrostatic restoring force/moment: Fsi3(t) =  −Ci3ζ3(t), i  = 1, . . . , 6 

In general Fsij(t) =  − 
P6 Cijζj , i  = 1, . . . , 6 where Cij is 6×6 restoring coef. matrixj=1 



Wave Diffraction Problem


x 

y 

Φtt + gΦz = 0  η(t) =  −Φt/g 
Radiation condition: 
diffracted waves must Deep water condition:~n 

z Body is fixed 

propagate away from the 0 as  
body ∇2Φ(x, y, z, t) = 0  

∇Φ → z → −∞  

F~E , M~E =??? 

Total potential: Φ(~x, t) =  ΦI(~,xt) +  ΦD(~x, t)

ΦI : Incident wave potential (of a plane progressive wave)

ΦD : Diffracted (or scattered) wave potential


Total dynamic pressure:  Pd = −ρΦIt  − ρΦDt Diffraction effect R R 
~ ~ ~Total wave excitations (force/moment): FE(t) =  ρΦIt  ~nds + ρΦIt  ~nds = FI + FDSB SB 

Froude-Krylov force R R 
M~E(t) =  

SB 
ρΦIt(~x × ~n)ds + 

SB 
ρΦDt(~x × ~n)ds = M~ I + M~D 



 wave:

Frequency-Domain Formulation of Wave Diffraction Problem 
z y 

−ω2φD + gφDz = 0  η̄D = −iωφD/gx 

Radiation condition: ∂φD ∂φI 

diffracted waves must ~n ∂n = − ∂n Deep water condition: 
propagate away from the φD 0 as  
body ∇2φD(x, y, z) = 0  

∇ → z → −∞  

Incident ηI (x, y, t) = a cos(ωt − kx) = <{ae−ikxeiωt} = <{η̄I e
iωt}

} = <{φIe }ΦI(~x, t) = −(ga/ω) sin(ωt − kx)ekz = <{(−iga/ω)ekz−ikxeiωt iωt

Diffraction potential: ΦD(~x, t) = <{φD(~x)eiωt} 

Total dynamic pressure: Pd(~x, t) = <{pd(~x)eiωt}, pd(~x) = pI + pD 

pI = −iρωφI , pD = −iρωφD 

Total wave excitations: F~E(t) = <{f~Eeiωt}, f~E = f~EI + f~ED R R 
Froude-Krylov force: f~EI = − 

SB 
pI ~nds = iρω 

SB 
φI ~nds R R 

Diffraction force: f~ED = − 
SB 
pD ~nds = iρω 

SB 
φD ~nds 

~ ~ = ~ ~M~E(t) = <{mEe
iωt}, mE mEI +mED 



Heave Response of A Floating Body to Ambient Waves


x 

y 

Φtt + gΦz = 0  η(t) = −Φt/g 

Deep water condition: 

z 

~n 

ζ3(t) = <{ ̄ζ3eiωt}, ζ̄3 =??? 

ηI = a cos(ωt − kx) 
Incident wave: 

x, t) + ΦD(~x, t) + ΦR(~x, t) 

Diffraction problem Radiation problem 

∇2Φ(x, y, z, t) = 0  
∇Φ → 0 as  z → −∞  

• Decompose the total problem into a sum of diffraction problem and radiation problem: 

Φ(~x, t) = ΦI (~

• From the diffraction problem: 
Wave excitation force: FE3(t) = <{fE3eiωt}, fE3 = f3I + f3D 

• From the radiation problem: 

Wave radiation force: FR3(t) = −A33ζ̈  
3(t)− B33ζ̇ 

3(t) = <{(−ω2A33 − iωB33)ζ̄3eiωt} 

Hydrostatic restoring force: Fs3 = −C33ζ3(t) = <{(−C33ζ̄3)eiωt} 



• Total hydrodynamic and hydrostatic forces: 

FE3 + FR3 + Fs3 = <{[fE3 − (ω2A33 + iωB33 + C33)ζ̄3]e
iωt} 

• Applying Newton’s second law: 
¨ FE3 + FR3 + Fs3 = mζ3(t) 

<{(−ω2m)eiωt} = <{[fE3 − (−ω2A33 + iωB33 + C33)ζ̄3]e
iωt} 

Equation of Motion: [−ω2(m	+A33) + iωB33 + C33]ζ̄3 = f3I + f3D 

• Heave motion amplitude:  	ζ̄3 = f3I +f3D

−ω2(m+A33)+iωB33+C33


¯̄̄̄



Response Amplitude Operator (RAO): ζ̄3(ω)	 (f3I + f3D)/a 
= −ω2(a
 m +A33) + iωB33 + C33
 ¯̄̄̄



(f3I + f3D)/a
 iα =
 e
−ω2(m +A33) + iωB33 + C33
´
³


Heave natural frequency:	 C33−ωn3(m +A33) + C33 = 0  → ω3n = m+A33 

1 
2 



Analogy to a Simple Mass-Spring-Dashpot System 

Body displacement 

Spring constant 

Excitation force 

Damping coefficient 

Body mass 

Equation of motion: mẍ+ bẋ+ cx = f(t)


For harmonic excitation, f(t) =  f0 cos ωt, we have harmonic response: x(t) =  x0 cos(ω + α), x0 =??
³ ´ 
From equation of motion, we obtain:  = f0 and α = tan−1 −bω x0 [(c−mω2)2+b2ω2]1/2 c−mω2 

Natural frequency: ωn = (c/m)
1/2	 x0 

=
1 
, at ω=0 

f0 c 
x0 1 
= , at ω=ωn

f0 bωn 
x0 

f0 
→ 0, as ω →∞  



x0 
f0 

1 
bωn 

1 
c 

α 
ωn 

ωn 

ω 

ω 
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