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Six-Degree-of-Freedom Motion of a Floating Body in Waves
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Translation in x:  surge ζ1(t)

Translation in y:  sway ζ2(t);

Translation in z:  heave ζ3(t);

Rotation with x:   roll ζ4(t);

Rotation with y:   pitch ζ5(t);

Rotation with z:   yaw ζ6(t);
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Local motions

Slamming

Water on deck

Effect of breaking waves

Accelerations
Wave bending moments and shear forces

Liquid sloshing in Tanks

Examples of Seakeeping and Wave Load Problems for Ships and
Offshore Structure
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Concerns of Seakeeping in FPSO Design


• Increasing maximum loads (due to dynamic pressure)

• Affecting operation 

– Production by Risers 
– Gas-oil, oil/water separation 
– Normally, heave amplitude < 4m, pitch amplitude < 5 degrees, 

roll amplitude < 10 degrees, excursion < (5~8)% water depth 
• Vibration of superstructures 
• Fatigue life of hull structures, risers, etc. 
• Survival in extreme seas 
• Local extreme structure damage (bottom slamming,


breaking wave impact, green water on deck etc.) 

• Human safety 



Hydrodynamic Forces on a Body in Unbounded Fluid


Ub (1) Uf =0, Ub(t) = 06

Uf 

F F (t) =  −ma 
dUb (t) 
dt 

Added massma : Depending on body
D geometry, motion 

direction, fluid density 
(2) Uf (t) = 0,  Ub=06

Morrison’s formula: 
dUf (t) dUf (t) ρ: Fluid density

F (t) =  ρ∇ + ma ∇: Body volumedt dt 
Froude-Krylov force Added mass effect 
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Potential Flow


� In typical marine engineering applications such as ships, offshore platforms, 


ULRe = ν = 10
6∼10 

Thus, viscous effect can be neglected in general. 

�	 Flow can be considered as a irrotational flow   (i.e. vorticity ∇ × ~v = 0)  
except under some special conditions where flow separation occurs. 

�	 Fluid motion in the ocean is normally assumed as a potential flow: 

Velocity: ~v(x, y, z, t) =  ∇φ(x, y, z, t)


Continuity equation: ∇2φ = 0 


Momentum eqaution: p(x,y,z,t) ∂φ 1 2 − gzρ = − ∂t − 2 |∇φ|

�	 The key is to solve the Laplace equation with certain boundary conditions for the 
velocity potential φ(x, y, z, t) 



Linearized (Airy) Wave Theory




•Boundary-Value Problem (BVP) for linearized (Airy) wave:  y=0 

y=-h 

•Given velocity potential φ, find free-surface elevation η and pressure p: 




Solution of 2D Periodic Progressive (Airy) Waves


Potential: 


Free-surface elevation: η = A cos(kx − ωt) 

A = H/2: wave amplitude; k= 2π/λ: wavenumber; ω =2π/T : frequency 

Dispersion relation: ω2 = gk tanh kh 

Phase velocity: 
 Vp
≡
 λ ω
=
 k
T
 =

p


g
k
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Characteristics of a Linear Plane Progressive Wave 

•Velocity Field: 





•Pressure Field: 




Wave Energy


•Wave energy propagation speed: group velocity:  Vg 
dω= dk 



Example: Wave Loads on Vertical Wall 

A vertical wall is located at x=0 in in a water of depth h: 

η(x, t) =  A cos(kx − ωt) +  A cos(kx + ωt) 

φ(x, y, t) =  gA cosh k(y+h) [sin(kx − ωt) − sin(kx + ωt)]ω cosh kh 

p(x, y, t) =  −ρ ∂φ cosh k(y+h) [cos(kx − ωt) + cos(kx + ωt)]−ρgy∂t −ρgy = ρgA cosh kh 

p(x = 0, y, t) = 2ρgA cos ωt cosh k(y+h) − ρgycosh kh R 0
Fx = p(x = 0, y, t)dy−h R 0 R 0 

= 2ρgA cos ωt 
−h cosh k(y + h)dy − −h ρgydycosh kh


2ρgA ρgh2


= tanh kh cos ωt +k 2 
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