2.019 Design of Ocean Systems

Lecture 9

Ocean Wave Environment

March 7, 2011

Ocean Surface Wave Generation

Waves important to offshore structure design and operation: Wind waves or gravity waves with wave period $\mathrm{T}=5 \sim 20$ seconds, wavelength $\mathrm{O}(10) \mathrm{m}$ to $\mathrm{O}(500) \mathrm{m}$.

Source of forcing: wind
Source of restoring: gravity
Source of damping: wave breaking and viscous effects

-When wind starts ($0.5 \sim 2.0$ knots), capillary waves form
(e.g $\vee p=24 \mathrm{~cm} / \mathrm{s} \rightarrow \lambda=1.73 \mathrm{~cm}$)
-As wind becomes stronger, waves become longer

Wind energy input into water:

Wave evolution as wind blows

- Nonlinear wave-wave interactions cause energy to be transferred into longer waves
- Certain distance and duration (for wind to blow) are necessary for effective energy transfer
- Equilibrium sea: when energy input from the wind is balanced by dissipation
- When wind input energy is larger than dissipation, waves grow
- When wind input energy is smaller than dissipation, waves decay. Short waves decay faster.

$$
\begin{aligned}
& \text { Amplitude decays as } e^{-\gamma t} \\
& \gamma=2 \nu k^{2}=2 \nu \omega^{4} / g^{2} \\
& \quad(\text { Landau }+ \text { Lifshitz) }
\end{aligned}
$$

Shorter waves are steeper, and easier to break

-Wind must blow over long periods of time and large distances to reach fullydeveloped state.

- At fully-developed state, $U_{w} \sim V_{p}$ (ie. $\omega_{\text {limit }} \sim g / U_{w}$)
- Swell: waves are not generated by local wind
- Sea: waves generated by local wind

Required fetch and storm duration:

Beaufort scale	wind speed (mph)	fetch (mills)	duration (h)
$3-4$	12	15	3
$5-6$	25	100	12
7	35	400	28
9	50	1,050	50

Standard Wave Spectra

Based on measured spectra and theoretical results, standard spectrum forms have been developed:
Bretschneider spectrum:

$$
S(\omega)=\frac{1.25}{4} \frac{\omega_{m}^{4}}{\omega^{5}} H_{s}^{2} \exp \left\{-1.25\left(\frac{\omega_{m}}{\omega}\right)^{4}\right\}
$$

ω_{m} is peak or modal frequency
H_{s} is significant wave height

$$
\int_{0}^{\infty} S(\omega) \mathrm{d} \omega=M_{0}=\left(\frac{H_{s}}{4}\right)^{2}
$$

For fully developed sea (Pierson-Moskowitz spectrum):

$$
\omega_{m}=0.4 \sqrt{\frac{g}{H_{s}}}
$$

JONSWAP Spectrum:

$$
\begin{array}{ll}
S(\omega)=\frac{\alpha g^{2}}{\omega^{5}} \exp \left\{-1.25\left(\frac{\omega_{p}}{\omega}\right)^{4}\right\} \cdot \gamma^{\exp \left\{-0.5\left(\frac{\omega-\omega_{p}}{\sigma \omega_{p}}\right)^{2}\right\}} \\
\alpha=5.061\left(\frac{\omega_{p}}{2 \pi}\right)^{4} H_{s}^{2}[1-0.287 \log \gamma] & \begin{array}{l}
H_{s}: \text { significant wave frequency } \\
\omega_{p}: \text { peak frequency }
\end{array} \\
\sigma=0.07 \text { for } \sigma<\omega_{p}, \text { and } \sigma=0.09 \text { for } \omega \geq \omega_{p} & \gamma: \text { peak enhance coefficient }
\end{array}
$$

Combined Sea and Swell:

$$
S(\omega)=S_{\text {swell }}(\omega)+S_{\text {sea }}(\omega)
$$

Response Spectra of a Floating Structure in Irregular Waves

For a linear time-invariant (LTI) system:

$H_{j}(\omega)$:Transfer function (or RAO) of the linear system, determined by the system itself

Spectra of the response: $S_{\zeta_{j}}(\omega)=\left|H_{j}(\omega)\right|^{2} S_{\eta}(\omega), \quad$ where $S_{\eta}(\omega)$ is wave spectrum
Design strategy:

- To avoid large response, make the peak of $H_{j}(\omega)$ away from the peak of $\mathrm{S} \eta(\omega)$
- For wave energy extraction, make the peak of $\mathrm{Hj}(\omega)$ close to the peak of $\mathrm{S} \eta(\omega)$

Short-Term Statistics

Broadband

- Once the spectrum of a random process is given, the statistics of the random process can be obtained in terms of moments and bandwidth of the spectrum.

$$
\text { Moments: } \begin{aligned}
m_{0} & =\int_{0}^{\infty} S(\omega) \mathrm{d} \omega \\
m_{2} & =\int_{0}^{\infty} \omega^{2} S(\omega) \mathrm{d} \omega \\
m_{4} & =\int_{0}^{\infty} \omega^{4} S(\omega) \mathrm{d} \omega
\end{aligned}
$$

Bandwidth coefficient:

$$
\epsilon=\sqrt{1-\frac{m_{2}^{2}}{m_{0} m_{4}}}, \quad 0 \leq \epsilon \leq 1
$$

If $\varepsilon \geq \sim 0.5$, called broadband
If $\varepsilon<\sim 0.5$, called narrowband In typical ocean, $\varepsilon=0.5 \sim 0.6$

Issue in Evaluating m_{n} (with $\mathrm{n} \geq 4$)

Typically for ocean waves, we have $S(\omega) \sim \omega^{-5}$ as $\omega \rightarrow \infty$

$$
\begin{aligned}
& m_{4}=\int_{0}^{\infty} \omega^{4} S(\omega) \mathrm{d} \omega=\int_{0}^{\omega_{1}} \omega^{4} S(\omega) \mathrm{d} \omega+\int_{\omega_{1}}^{\infty} \omega^{4} \times \omega^{-5} \mathrm{~d} \omega \\
&\left.\longrightarrow(\log \omega)\right|_{\omega_{1}} ^{\infty} \rightarrow \infty \text { Diverges !! }
\end{aligned}
$$

There are two solutions for this issue:

- Truncate the integration up to $3 \omega_{\mathrm{m}}$. This has advantage that scaling can be applied between model and full-scale tests.
- Choose a constant upper limit, typically $\omega_{\max }=2.0$ radian $/ \mathrm{sec}$. . When scaling, this may be necessary to avoid very large frequency tests.

Zero Up-crossing Period and Peak to Peak Period

Simulation of a random process from a given spectrum $\mathrm{S}(\omega)$:

$$
\begin{aligned}
\eta(x, t)= & \sum_{j}^{N} A_{j} \cos \left(\omega_{j} t-k_{j} x+\psi_{j}\right) \\
& \omega_{j}^{2}=g k_{j} \tanh k_{j} H, \quad A_{j}^{2}=\frac{1}{2} S\left(\omega_{j}\right) \Delta \omega_{j} \\
& \psi_{j}: \text { random phase uniformly distributed in }[0,2 \pi] .
\end{aligned}
$$

$T_{z i}$: Zero up-crossing period
$T_{c i}$: Peak to Peak period

Average zero up-crossing period: $\quad \bar{T}_{z}=2 \pi \sqrt{\frac{m_{0}}{m_{2}}}$
Average peak-to-peak period:

$$
\bar{T}_{c}=2 \pi \sqrt{\frac{m_{2}}{m_{4}}}
$$

How Often is "A" Level Exceeded??

$\bar{T}(A)$: Average period for " A " level exceeded
If $A=0$, then $T_{i}(A)=T_{i}(0)=T_{z i} \quad \rightarrow \bar{T}(0)=\bar{T}_{z}$
$\bar{n}(A)=\frac{1}{\bar{T}(A)}$: Average frequency of up-crossings if level "A" (ie. number of up-crossings of level "A" per second)
$\bar{n}(0)=\frac{1}{\bar{T}_{z}}$: Average frequency of zero up-crossings
$\bar{n}(A)=\frac{1}{2 \pi} \sqrt{\frac{m_{2}}{m_{0}}} \mathrm{e}^{-A^{2} / 2 m_{0}}=\frac{1}{T_{z}} \mathrm{e}^{-A^{2} / 2 m_{0}}=\bar{n}(0) \mathrm{e}^{-A^{2} / 2 m_{0}}$

Example

A FPSO is exposed to a storm with waves of $m_{0}=4$ meter 2 and average period of $T=8$ seconds. Design the free deck height h so that the deck is flooded by green water only once every 10 minutes. (Neglect body motion and diffracted wave effects).

Wave spectrum $\mathrm{S}(\omega): m_{0}=4, \quad \bar{T}_{z}=8$

$$
\begin{gathered}
\bar{n}(h)=\frac{1}{\bar{T}_{z}} \mathrm{e}^{-h^{2} /\left(2 m_{0}\right)}=\frac{1}{10 \times 60} \\
h=\sqrt{-2 m_{0} \ln \left(\frac{\bar{T}_{z}}{600}\right)}=5.8 \text { meters }
\end{gathered}
$$

Maxima

Probability
density density
function
p p($\left.\frac{x_{m}}{\sqrt{m_{0}}}\right)$
X_{m} : Local maxima of wave elevation

Rayleigh Distribution:

$$
p\left(x_{m}\right)=\frac{x_{m}}{m_{0}} e^{-x_{m}^{2} /\left(2 m_{0}\right)}
$$

$p\left(x_{m}\right)=\frac{1}{\sqrt{2 \pi m_{0}}} \mathrm{e}^{-x_{m}^{2} /\left(2 m_{0}\right)}$
Rayleigh Distribution

$\varepsilon=1$
$\varepsilon=0$

1/N th Highest Maxima

$a_{1}, a_{2}, \ldots, a_{n}, \ldots$, are the maxima of $\eta\left(x_{0}, t\right)$
$a^{1 / N}$ is the value that is exceeded by $1 / N$ th maxima.
Example: $N=10, \quad a^{1 / 10}$ is the value that is exceeded (on the average) by 10% of the maxima.

$$
a^{1 / N}=\sqrt{m_{0}} \sqrt{2 \ln \left(\frac{2 \sqrt{1-\epsilon^{2}}}{1+\sqrt{1-\epsilon^{2}}} N\right)}
$$

1/N th Highest Average Maxima

$\overline{a^{1 / N}}$: The average value of all the maxima above $a^{1 / N}$.

$$
\overline{a^{1 / N}}=E\left\{\left.a_{m}\right|_{a_{m}>a^{1 / N}}\right\}
$$

This is called the $1 / N$ highest average amplitude.

$$
\begin{aligned}
\overline{a^{1 / N}}= & 2 N \sqrt{m_{0}} \frac{\sqrt{1-\epsilon^{2}}}{1+\sqrt{1-\epsilon^{2}}} \int_{\eta^{1 / N}}^{\infty} \zeta^{2} \mathrm{e}^{-\zeta^{2} / 2} \mathrm{~d} \zeta \\
& \text { with } \eta^{1 / N}=a^{1 / N} / \sqrt{m_{0}}
\end{aligned}
$$

$\overline{a^{1 / 3}}$ Significant amplitude: the $1 / 3$ highest average amplitudes $H^{1 / 3}$ Significant height: twice of significant amplitude. $H^{1 / 3}=2 \overline{a^{1 / 3}}$ For narrow baneded spectrum ($\varepsilon<0-5$) , the following holds:

$$
\overline{a^{1 / 3}}=2 \sqrt{m_{0}} \quad H_{1 / 3}=4 \sqrt{m_{0}}
$$

Example

Given spectrum $\mathrm{S}(\omega)$ with $\mathrm{m} 0=4, \mathrm{~m} 2=1.75, \mathrm{~m} 4=1.0$, find
Q1: what is the probability that the amplitude is large than $\mathrm{A}=10 \mathrm{~m}$?

$$
\begin{gathered}
\epsilon=\sqrt{1-\frac{m_{2}^{2}}{m_{0} m_{4}}}=\sqrt{1-\frac{1.75^{2}}{4 * 1.0}}=0.484 \\
P(A>10 m)=\frac{2 \sqrt{1-\epsilon^{2}}}{1+\sqrt{1-\epsilon^{2}}} \mathrm{e}^{-10^{2} /\left(2 m_{0}\right)}=3.5 \times 10^{-6}
\end{gathered}
$$

Q2: obtain $A^{1 / 10}, \overline{A^{1 / 10}}, \overline{A^{1 / 3}}, H^{1 / 3}$

$$
\begin{aligned}
& A^{1 / 10}=\sqrt{2 m_{0} \ln \left(\frac{2 \sqrt{1-\epsilon^{2}}}{1+\sqrt{1-\epsilon^{2}}} N\right)}=4.23 \text { meters } \\
& \quad \eta^{1 / 10}=\frac{A^{1 / 10}}{\sqrt{m_{0}}}=2.12 \\
& \overline{A^{1 / 10}}=\sqrt{m_{0}} 2 N \frac{\sqrt{1-\epsilon^{2}}}{1+\sqrt{1-\epsilon^{2}}} \int_{\eta^{1 / 10}}^{\infty} \zeta^{2} \mathrm{e}^{-\zeta^{2} / 2} \mathrm{~d} \zeta=\ldots \\
& \left.\overline{A^{1 / 3}}=2 \sqrt{m_{0}}=4 \text { meter (assuming narrow band }\right) \\
& H_{1 / 3}=2 \overline{A_{1 / 3}}=8 \text { meters }
\end{aligned}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

2.019 Design of Ocean Systems

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

