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Cable Load-Excursion Relation
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Catenary Solution ⎯⎯ Key Results (with Elasticity) 

• Horizontal force for a given fairlead tension T: q¡ ¢2 
T = AAEE T + 1 2wh TH 

q¡ 
+ 1AE − AE −− AAEE − 

• Minimum line length required (or suspended length for a given fairlead tension) 
for gravity anchor: p

lmin = 1 T 2 − T 2 
w H 

•• Vertical force at the fairlead: Vertical force at the fairlead: 

Tz = wlmin 
•• Horizontal scope (length in plan view from fairlead to touchdown point): Horizontal scope (length in plan view from fairlead to touchdown point): 

x = TH sinh−1 wlmin + TH lmin 
w TH AE H 

AE: stiffness of the cable 



Analysis of Spread Mooring System


• Mean position of the body is determined 
by balancing force/moment between 
those due to environments and mooringthose due to environments and mooring 
lines 

• Iterative solver is usually applied 

(xi, yi)

THiy

x

ψi

Total mooring line force/moment:

F = ∑
n

M
1 THi  cos ψ i

i=1
n

F M
2 = ∑ THi  sin ψ i

i=1
n

F M
6 = ∑ THi [xi  sin ψ i − yi  cos ψ i ]

i=1

Total mooring line restoring coefficients:

C11 = ∑
n

ki  cos2  ψ i
i=1

n

C ki in2
22 = ∑  s  ψ i

i=1

C66 = ∑
n

ki ( xi  sin ψ i −− yi  cos ψ i )
2

i=1
n

C26 = C62 = ∑ ki ( xi  sin ψ i − yi  cos ψ i )  sin ψ i
i=1
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Mooring Line Dynamics
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Mooring Forces and Displacement vs. Mooring Stiffness


Thus as a general rule, as a system is made less stiff, the mooring forces will be smaller and the 
displacements will be larger. 

Mooring  force =  steady force              (independent  of  sstiffness)

                            +  slow drift  mooringg  force (∝ stiffness )
                            +  wave freequency motion   (∝ stiffness)

steady forceDisplacement  =  
s

 1     stiffness ttiffness  ∝ 

                          slo  1 ww drift  displacement     stiffness  ∝ 
                           wave frequency motion  (independent  of  stiffness))



Load/Displacement Combinations and Extreme Values 
Tensions and excursions in a mooring system have three components: 

(1) a static component known as Tstatic  which arises from wind, wave drift, and current

       (2) a wave frequency component, which occurs in the range of 0.03 to 0.3 Hz and is caused by first order wave loads 

(3) a low frequency component, which occurs in the range of 0 to 0.02 Hz and is caused by second order waves and 
wind dynamics 

Significant wave frequency motion

Maximum wave frequency motion:

Significant low-frequency motion: 

Maximum Maximum llowow-frequencyfrequency motion: motion:

: 

xwfm  a x = 2ln (T    /Tzwf )σ  wf

xlfsig = 2σ lf

xlfm  a x

xwfsig = 2σ wf

exp

= 2ln (Texp /T lf )σ    z  lf

 

Texp ~ 3 to 6 hours; Tz: peak period 

xdyn = max[(xwfmax + xlfsig),(xwfsig + xlfmax)]
Maximum combined dynamic tension/excursion:
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Mooring Line Materials 
Chain: 

– Studless or studded chain links 
– Heavy, highbreaking strength, high elastisity 
– No bending effect 
– Most popular, all chain in shallow water (< 100M) 
– Chain segments are used near fairlead and bottom (in deepwater)Chain segments are used near fairlead and bottom (in deepwater) 

Wire: 
– Lighter than chain 
– Slight bending effect 
– U d  i  i li  t i d  t (t  d  ti l l  dUsed as main mooring line segments in deep water (to reduce vertical loads)) 

High-Tech Fibre: 
– Light weight (almost neutrally buoyant) 
– Higg yhly extensible 
– Potentially useful for very deep water 
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Chain

Weight and Stiffness:
Submerged weight per unit length, w = 0.1875D2 N/M (D in mm)
Axial stiffness per unit length, AE = 90000D2 N (D in mm)

Breaking Strength:

CBS or proof load = c(44 - 0.08D)D2 N (D in mm)
Catalogue breaking strength

Values of c:

Grade (specification) Catalogue Break Strength Proof Load

ORQ 21.1 14.0
3 22.3 14.8

3S 24.9 18.0
4 27.4 21.6



Wire Rope


Construction Submerged weight/length, w Stiffness/length, AE

Six strand (IWRC) 0.034d2 N (d in mm) 45000d2 N (d in mm)
Spiral strand 0.043d2 N (d in mm) 90000d2 N (d in mm)

Weight and Stiffness:

Construction Ultimate Tensile Stress (N/mm2) Breaking Strength (N)

Six strand (IWRC) 1770 525d2 (d in mm)
Six strand (IWRC) 1860 600d2 (d in mm)

Spiral strand 1570 900d2 (d in mm)

Breaking Strength:
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High Technology Fibre Rope 

Weight and Stiffness:

Breaking Strength:

Fibre Rope Type Weight Per Unit Length (N/m)

Polyester 0.0067d2 (d in mm)
Aramid 0.00565d2 (d in mm)
HMPE 0.0062d2 (d in mm)

Fibre Rope Type Breaking Strength (N)

Polyester 250d2 (d in mm)
Aramid 450d2 (d in mm)
HMPE 575d2 (d in mm)



Properties of Typical Systems

Extreme Excursions as a Percentage of Water Depth

Water Depth (m) Mooring Type Semi-submersible Ship

30 Chain/wire 30-45% 40-55%

150 Chain 15-25% 30-40%

500 Chain/wire 25-30% 20-30%

1000 Fibre ropes 5-10% 5-15%

Typical Natural Periods of Mooring Systems

Water Depth (m) Mooring Type Semi-submersible (s) Ship (s)

30 Chain/wire 30 45

150 Chain 60-120 60-150

500 Chain/wire 120-180 150-250

1000 Fibre ropes 90-110 120-150



Guidance, Rules, and Regulations 
IACS (International Association of Classification Societies) safety factors: 

for survival conditions 

Condition Safety factor (= Break strength/Max.tension)

Intact 1.67
One line removed 1.25
Transient 1.05

Condition Safety factor (= Break strength/Max.tension)

Intact 1.8
One line removed 1.25
Transient 1.1

IACS (International Association of Classification Societies) safety factors: for survival conditions for operating 
conditions, these safety factors are increased by about 50%.

API RP 2SK Safety Factors:
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