2.019 Design of Ocean Systems

Lecture 14

Mooring Dynamics (III)

April 1, 2011

Cable Load-Excursion Relation

Restoring Coefficient:

$$C_{11} = \frac{\mathrm{d}T_H}{\mathrm{d}X} = w \left[\frac{-2}{\left(1 + 2\frac{T_H}{wh}\right)^{1/2}} + \cosh^{-1}\left(1 + \frac{wh}{T_H}\right) \right]^{-1}$$

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Catenary Solution — Key Results (with Elasticity)

• Horizontal force for a given fairlead tension T:

$$T_H - AE\sqrt{\left(\frac{T}{AE} + 1\right)^2 - \frac{2wh}{AE}} - AE$$

 Minimum line length required (or suspended length for a given fairlead tension) for gravity anchor:

$$l_{\min} = \frac{1}{w}\sqrt{T^2 - T_H^2}$$

• Vertical force at the fairlead:

$$T_z = w l_{\min}$$

• Horizontal scope (length in plan view from fairlead to touchdown point):

$$x = \frac{T_H}{w} \sinh^{-1} \frac{w l_{\min}}{T_H} + \frac{T_H l_{\min}}{AE}$$

AE: stiffness of the cable

Analysis of Spread Mooring System

Image by MIT OpenCourseWare.

- Mean position of the body is determined by balancing force/moment between those due to environments and mooring lines
- Iterative solver is usually applied

Total mooring line force/moment:

$$F_1^{M} = \sum_{i=1}^{n} T_{Hi} \cos \psi_i$$

$$F_2^{M} = \sum_{i=1}^{n} T_{Hi} \sin \psi_i$$

$$F_6^{M} = \sum_{i=1}^{n} T_{Hi} [x_i \sin \psi_i - y_i \cos \psi_i]$$

Total mooring line restoring coefficients:

$$C_{11} = \sum_{i=1}^{n} k_{i} \cos^{2} \psi_{i}$$

$$C_{22} = \sum_{i=1}^{n} k_{i} \sin^{2} \psi_{i}$$

$$C_{66} = \sum_{i=1}^{n} k_{i} (x_{i} \sin \psi_{i} - y_{i} \cos \psi_{i})^{2}$$

$$C_{26} = C_{62} = \sum_{i=1}^{n} k_{i} (x_{i} \sin \psi_{i} - y_{i} \cos \psi_{i}) \sin \psi_{i}$$

Mooring Line Dynamics

Image by MIT OpenCourseWare.

Mooring Forces and Displacement vs. Mooring Stiffness

Mooring force = steady force (independent of stiffness) + slow drift mooring force ($\propto \sqrt{stiffness}$) + wave frequency motion (\propto stiffness)

$$Displacement = \frac{steady \ force}{stiffness} \left(\frac{1}{\infty} \ stiffness\right)$$
$$slow \ drift \ displacement \ \left(\frac{1}{\infty} \ \sqrt{stiffness}\right)$$
$$wave \ frequency \ motion \ (independent \ of \ stiffness)$$

Thus as a general rule, as a system is made less stiff, the mooring forces will be smaller and the displacements will be larger.

Load/Displacement Combinations and Extreme Values

Tensions and excursions in a mooring system have three components:

- (1) a static component known as Tstatic which arises from wind, wave drift, and current
- (2) a wave frequency component, which occurs in the range of 0.03 to 0.3 Hz and is caused by first order wave loads
- (3) a low frequency component, which occurs in the range of 0 to 0.02 Hz and is caused by second order waves and wind dynamics

Significant wave frequency motion: $x_{wfsig} = 2\sigma_{wf}$

Maximum wave frequency motion: $x_{wfmax} = \sqrt{\left[2\ln\left(T_{exp} / T_{zwf}\right)\right]}\sigma_{wf}$

Significant low-frequency motion:

$$x_{lfsig} = 2\sigma_{lf}$$

Maximum low-frequency motion:

$$x_{lfmax} = \sqrt{\left[2\ln\left(T_{exp} / T_{zlf}\right)\right]}\sigma_{lf}$$

 $T_{exp} \sim 3$ to 6 hours; T_z : peak period

Maximum combined dynamic tension/excursion:

 $x_{dyn} = \max[(x_{wfmax} + x_{lfsig}), (x_{wfsig} + x_{lfmax})]$

Mooring Analysis Flowchart

Image by MIT OpenCourseWare.

Mooring Line Materials

Chain:

- Studless or studded chain links
- Heavy, highbreaking strength, high elastisity
- No bending effect
- Most popular, all chain in shallow water (< 100M)
- Chain segments are used near fairlead and bottom (in deepwater)

Wire:

- Lighter than chain
- Slight bending effect

- Used as main mooring line segments in deep water (to reduce vertical loads)

High-Tech Fibre:

- Light weight (almost neutrally buoyant)
- Highly extensible
- Potentially useful for very deep water

© Centre for Marine and Petroleum Technology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Chain

Weight and Stiffness:

Submerged weight per unit length, $w = 0.1875D^2$ N/M (D in mm) Axial stiffness per unit length, $AE = 90000D^2$ N (D in mm)

Breaking Strength:

CBS or proof load = $c(44 - 0.08D)D^2$ N (D in mm)

Catalogue breaking strength

Val	lues	of	c:
Val	lues	10	c:

Grade (specification)	Catalogue Break Strength	Proof Load
ORQ	21.1	14.0
3	22.3	14.8
3S	24.9	18.0
4	27.4	21.6

Wire Rope

 $\ensuremath{\mathbb{C}}$ Centre for Marine and Petroleum Technology. All rights reserved. This content is excluded

Weight and Stiffness: from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Construction	Submerged weight/length, w	Stiffness/length, AE
Six strand (IWRC)	0.034d ² N (<i>d</i> in mm)	45000d ² N (<i>d</i> in mm)
Spiral strand	0.043d ² N (<i>d</i> in mm)	90000d ² N (<i>d</i> in mm)

Breaking Strength:

Construction	Ultimate Tensile Stress (N/mm ²)	Breaking Strength (N)
Six strand (IWRC)	1770	$525d^2$ (<i>d</i> in mm)
Six strand (IWRC)	1860	$600d^2$ (<i>d</i> in mm)
Spiral strand	1570	900 <i>d</i> ² (<i>d</i> in mm)

High Technology Fibre Rope

Weight and Stiffness:

Fibre Rope Type	Weight Per Unit Length (N/m)
Polvester	$0.0067d^2$ (d in mm)
1 oryester	0.0007 <i>a</i> (<i>a</i> m mm)
Aramid	$0.00565d^2$ (<i>d</i> in mm)
HMPE	$0.0062d^2$ (<i>d</i> in mm)

Breaking Strength:

Fibre Rope Type	Breaking Strength (N)
Polyester	$250d^2$ (<i>d</i> in mm)
Aramid	$450d^2$ (<i>d</i> in mm)
HMPE	$575d^2$ (<i>d</i> in mm)

Properties of Typical Systems

Extreme Excursions as a Percentage of Water Depth

Water Depth (m)	Mooring Type	Semi-submersible	Ship
30	Chain/wire	30-45%	40-55%
150	Chain	15-25%	30-40%
500	Chain/wire	25-30%	20-30%
1000	Fibre ropes	5-10%	5-15%

Typical Natural Periods of Mooring Systems

Water Depth (m)	Mooring Type	Semi-submersible (s)	Ship (s)
30	Chain/wire	30	45
150	Chain	60-120	60-150
500	Chain/wire	120-180	150-250
1000	Fibre ropes	90-110	120-150

Guidance, Rules, and Regulations

IACS (International Association of Classification Societies) safety factors: for survival conditions

Condition	Safety factor (= Break strength/Max.tension)
Intact	1.8
One line removed	1.25
Transient	1.1

IACS (International Association of Classification Societies) safety factors: for survival conditions for operating conditions, these safety factors are increased by about 50%.

API RP 2SK Safety Factors:

Condition	Safety factor (= Break strength/Max.tension)
Intact	1.67
One line removed	1.25
Transient	1.05

MIT OpenCourseWare http://ocw.mit.edu

2.019 Design of Ocean Systems Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.