2.019 Design of Ocean Systems

Lecture 12
Mooring Dynamics (I)
March 18, 2011

Position keeping
Chain, wire, rope, ...
Steel, natural fibre, synthetic fibre
Good for tension, ineffective for compression, bending moment,
Tension are provided by weight and elasticity of cables
Vertical mooring: TLP
Spreading mooring: FPSO, SPAR

Reference:
O. M. Faltinsen, 1990 Sea Loads on Ships and Offshore Structures, Cambridge University Press

Image by MIT OpenCourseWare.
Given top end position or tension at the top end, to find:

- Configuration of the cable: $s(\phi)$ or $x(\phi), z(\phi)$ or $z(x)$
- Tension along the cable: $\mathrm{T}(\mathrm{s})$ or $\mathrm{T}(\mathrm{x})$ or $\mathrm{T}(\mathrm{z})$.

Static Analysis of a Cable Line

Image by MIT OpenCourseWare.
Tangential direction: $d \mathrm{~T}-\rho g \mathrm{~A} \mathrm{~d} z=[\omega \sin \phi-F(1+T /(A E))] d s$
Normal direction: $\quad T d \phi-\rho g A z d \phi=[\omega \cos \phi+D(1+T /(A E))] \mathrm{ds}$

Solution of Inelastic Cables

By introducing

Effective tension:

$$
T^{\prime}=T-\rho g z A
$$

we can write

Governing equations:

$$
d T^{\prime}=w \sin \phi \mathrm{~d} s
$$

$$
T^{\prime} \mathrm{d} \phi=w \cos \phi \mathrm{~d} s
$$

By dividing these two equations we see that

$$
\frac{d T^{\prime}}{T^{\prime}}=\frac{\sin \phi}{\cos \phi} \mathrm{d} \phi \longrightarrow \frac{\mathrm{~d} T^{\prime}}{T^{\prime}}=-\frac{\mathrm{d} \cos \phi}{\cos \phi}
$$

i.e.

Tension along the cable: $\quad T^{\prime}=T_{0}{ }^{\prime} \frac{\cos \phi_{0}}{\cos \phi}$

By integrating equation (8.3) we find that
Solution of $\mathrm{s}(\phi)$: $\quad s-s_{0}=\frac{1}{w} \int_{\phi_{0}}^{\phi} \frac{T_{0}{ }^{\prime}}{\cos \theta} \frac{\cos \phi_{0}}{\cos \theta} \mathrm{~d} \theta=\frac{T_{0}{ }^{\prime} \cos \phi_{0}}{w}\left[\tan \phi-\tan \phi_{0}\right]$
Since $\mathrm{d} x=\cos \phi \mathrm{d}$ s we can write
Solution of $\mathrm{x}(\phi): \quad x-x_{0}=\frac{1}{w} \int_{\phi_{0}}^{\phi} \frac{T_{0}{ }^{\prime} \cos \phi_{0}}{\cos \theta} \mathrm{~d} \theta$

$$
\begin{align*}
= & \frac{T_{0}{ }^{\prime} \cos \phi_{0}}{w}\left(\log \left(\frac{1}{\cos \phi}+\tan \phi\right)\right. \\
& \left.-\log \left(\frac{1}{\cos \phi_{0}}+\tan \phi_{0}\right)\right) \tag{8.6}
\end{align*}
$$

Since $\mathrm{d} z=\sin \phi \mathrm{d} s$ we find that
Solution of $\mathrm{z}(\phi): \quad z-z_{0}=\frac{1}{w} \int_{\phi_{0}}^{\phi} \frac{T_{0}{ }^{\prime} \cos \phi_{0} \sin \theta}{\cos ^{2} \theta} \mathrm{~d} \theta$

$$
\begin{equation*}
=\frac{T_{0}{ }^{\prime} \cos \phi_{0}}{w}\left[\frac{1}{\cos \phi}-\frac{1}{\cos \phi_{0}}\right] \tag{8.7}
\end{equation*}
$$

Choose ϕ_{0} to be the point of contact between the cable line and the sea bed, i.e. $\phi_{0}=0$. What is $\mathrm{T}_{0}{ }^{\prime}$??

$$
T_{0}^{\prime}=T^{\prime}(\phi) \cos \phi=T^{\prime}\left(\phi_{w}\right) \cos \phi_{w}=T_{H}
$$

Given the horizontal component of the tension at the waterline T_{H}, we then have:
Cable configuration: $\quad s=\frac{T_{H}}{\omega} \sinh \left(\frac{\omega}{T_{H}} x\right)$

$$
z+h=\frac{T_{H}}{\omega}\left[\cosh \left(\frac{\omega}{T_{H}} x\right)-1\right]
$$

Tension along the cable: $T-\rho g z A=\frac{T_{H}}{\cos \phi}=T_{H}+\omega(z+h)$

$$
T=T_{H}+\omega h+(\omega+\rho g A) z
$$

Vertical component of the tension T_{z} at the waterplae:

$$
T_{z}=w s
$$

MIT OpenCourseWare
|http://ocw.mit.edu

2.019 Design of Ocean Systems

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

