Autonomous Navigation of a Quadrotor Helicopter Using GPS and Vision Control

Group 1

December 10, 2009

Project Tasks

- Fly helicopter to a predetermined location using GPS feedback
- Take pictures at this location
- Fly a planned path along GPS coordinates
- Take pictures along the reference path
- Use GPS and camera feedback to visually servo to and land on a marked target

Practical Applications

- Any process involved with the discovery and inspection of small objects
- UAV refueling midflight
- Land mine detection by autonomous ground robots
- Landing of an AUV or parking an autonomous ground vehicle at a certain location based on object recognition

Quadrotor Specifications

- Weighs 1.25 kg
- 200 g maximum payload
- 23 minute battery life (hovering)
- 12 minute battery life (with max load)

Photo of the Ascending Technologies Hummingbird Autopilot Quadrocopter removed due to copyright restrictions.

Quadrotor Dynamics

- Independent thrust, pitch, roll and yaw.
- Quadrotor able to make precise maneuvers.
- Can move one of two ways

Current Hardware Layout

Electrical and Signal Flow Schematic

Controller:

- Point and go control strategy
- Needs to be robust against sensor noise and wind gusts
- Written in MATLAB

Quadrotor:

- Controllable pitch, roll, thrust, and yaw-rate.
- Low drag
- Internal stabilizing controls

Sensors:

- GPS
- Compass
- Camera
- Quadrotor's internal sensors
- Communicate wirelessly

Compass, Power Circuit, and Anemometer

Student A

Compass

www.ocean-server.com

Images from the OpenClipArt Library and mangonha on Flickr.

Compass

The heading is saved directly to a variable in MATLAB. (Using a C++ mex function called "compmat").

Big, but more reliable

Anemometer

A small AC generator. The output voltage increases linearly to the wind speed.

www.nrgsystems.com

www.arduino.cc

Rough Simulation

GPS Hardware and Integration

Students C and E

GPS Hardware

- XBee Communication
- Back-up Battery
 - Retains configuration settings
- Quadrotor Integration
 - □ 5V from power circuit

Current GPS Set-up

Images from the OpenClipArt Library and mangonha on Flickr.

GPS Accuracy Tests (Stationary)

Walk with GPS and Mock Controller

Roll

300

300

Timesteps

Timesteps Pitch 400

400

500

500

600

600

Proposed Region for Switch to Vision Control

Waypoint Testing

- Combines compass and GPS
 Adds heading
- Use GPS to pick waypoints
- Walk quadrotor by following commands from controller
- Check for arrival at destinations

Waypoint Testing

GPS on Flying Quadrotor

Accomplished:

Read GPS signal through XBee communication
 Maintain GPS settings using a watch battery
 Integrate GPS hardware with Quadrotor
 Transmit GPS signal from Quadrotor
 Send GPS data to flight controller

The Next Step:

Control quadrotor with GPS feedback

Control System

Student B

Deliverables

Demonstrate closed loop control on a LTI model of the quadrotor

Demonstrate closed loop control of the quadrotor

Control System Design

Strategy: Point and go

- Heading is set initially and is static
- Controlled variables
 - □ Yaw rate: points at the target
 - □ Roll: keeps on line to target
 - □ Pitch: determines speed forward or backwards
 - Thrust: offsets gravity and brings rotor to correct height
- Measured variables
 - □ Heading: compass
 - □ Latitude, Longitude positions: GPS
 - Height: internal pressure sensor
- PD control

Model Assumptions

- Linear Time Invariant
- Small angle pitch and roll (less than 5 deg)
- Max, Min thrust = 1.25mg and 0.75mg
- Rate of system: 4 Hz
- Added random noise to position data:
 - +/- 5m Gaussian error in X,Y
 - +/- 1m Gaussian error in height
 - +/- 10 Gaussian error degree for heading

Features

- Simulation mode and communication mode
- Waypoints enabled
- Mid-run user-activated terminate
- Mid-run user-activated hover toggle
- Flight data written to a file
- Recalculates route when overshoots

Future Work

Design against bad data-packetsTune gains for the real quadrotor

Simulator Performance

Simulator Performance

To Do Differently

- Use a Cartesian coordinate control system instead of radial
- Start with a control system that only uses GPS

Yaw Test

Set-up:

- Disturbed Quadrotor manually
- String contributed a restoring force
- Internal controls prevented fast

Data

Results

Steady state error
 Gains too low
 Steady disturbance from the string
 30 second settling time

Arduino Microcontroller and Communication

Student D

Mega Arduino

- On board control
- No need for XBees
- Successful compass communication
- Successful camera communication

Courtesy of Arduino.cc. Used with permission.

Other Work

- Helped with CMUCam communication
- Failed to successfully communicate with quadrotor
- Helped others with programming

Next Steps

- Continue work with Mega Arduino
- Read more about serial communication

What Could've Been Done Differently

- Research more early on
- Better use of available resources (mentors)

CMUCam and Image Processing

Student F

Image Processing Goals

- Take pictures of a predetermined location and also along a reference flight path
- Track a landing target at a known location
 Visually servo to the target using feedback from the image

Finding Distances in X, Y, and Z

- Find target size as fraction of pixels in the image at known ranges
- With a target of known size, we can find a parameter that converts pixels to distance at a known range

Target Fraction of Image as a Function of Range

T Packets Centroid of tracked data Bounding box coordinates T 84 132 4 1 172 250 255 12 Indicates a color tracking data packet Number of pixels that match

the tracked color

Confidence

What Went Wrong

- Neither CMUCam is ideal for our mission
- Wireless communication never really worked
 - XBee drops too many packets
- GPS waypoint tracking did not work
- Ran out of time

What We Could Have Done Differently

Problem

Worked independently-not the most effective

Solution

Weekly group meetings

Problem

Strategy depended on all hardware components working

Solution

Design a simpler, more independent system

Problem

Inexperience

Solution

Take more advantage of our resources

Questions?

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.