STABILITY AND TRIM OF MARINE VESSELS

Acknowledgements to Lt. Greg Mitchell for Slides 15-37

Concept of Mass Center for a Rigid Body

Centroid - the point about which moments due to gravity are zero:
$\Sigma \mathrm{gm} \mathrm{m}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{g}}-\mathrm{x}_{\mathrm{i}}\right)=0 \rightarrow$
$x_{g}=\Sigma m_{i} x_{i} / \Sigma m_{i}=\Sigma m_{i} x_{i} / M$

- Calculation applies to all three body axes: x, y, z
- x can be referenced to any point, e.g., bow, waterline, geometric center, etc.
- "Enclosed" water has to be included in the mass if we are talking about inertia

Center of Buoyancy

A similar differential approach with displaced mass: $\mathrm{x}_{\mathrm{b}}=\Sigma \Delta_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} / \Delta$, where Δ_{i} is incremental volume,
Δ is total volume
Center of buoyancy is the same as the center of displaced volume: it doesn't matter what is inside the outer skin, or how it is arranged.

Calculating trim of a flooded vehicle: Use in-water weights of the components, including the water (whose weight is then zero and can be ignored). The calculation gives the center of in-water weight.

- For a submerged body, a sufficient condition for stability is that z_{b} is above z_{g}.

Make $\left(z_{b}-z_{g}\right)$ large \rightarrow the "spring" is large and:

- Response to an initial heel angle is fast (uncomfortable?)
- Wave or loading disturbances don't cause unacceptably large motions
- But this is also a spring-mass system, that will oscillate unless adequate damping is used, e.g., sails, anti-roll planes, etc.
- In most surface vessels, righting stability is provided by the waterplane area.

RECTANGULAR SECTION
Geometry:
$\mathrm{d} \Delta / \mathrm{dx}=\mathrm{bh}+\mathrm{bl} / 2 \quad$ or
$h=(d \Delta / d x-b l / 2) / b$
$\mathrm{l}=\mathrm{b} \tan \theta$

Vertical forces:
$d F_{G}=-\rho g d \Delta \quad$ (no shear)
$\mathrm{dF}_{\mathrm{B} 1}=\rho \mathrm{gbh} \mathrm{dx}$
$\mathrm{dF}_{\mathrm{B} 2}=\rho \mathrm{gb\mid dx} / 2$

Moment arms:
$\mathrm{y}_{\mathrm{G}}=\mathrm{KG} \sin \theta ; \mathrm{y}_{\mathrm{B} 1}=\mathrm{h} \sin \theta / 2 ; \mathrm{y}_{\mathrm{B} 2}=(\mathrm{h}+\mathrm{l} / 3) \sin \theta+\mathrm{b} \cos \theta / 6$
Put all this together into a net moment (positive anti-clockwise):

$$
\begin{array}{rll}
\mathrm{dM} / \rho \mathrm{gg}= & -\mathrm{KG} \mathrm{~d} \Delta \sin \theta+\mathrm{bh}^{2} \mathrm{dx} \sin \theta / 2+ & \\
& \mathrm{b} / \mathrm{dx}[(\mathrm{~h}+\mathrm{I} / 3) \sin \theta+\mathrm{b} \cos \theta / 6] / 2 & \\
\text { (valid until the corner out of the water) }
\end{array}
$$

Linearize ($\sin \theta \sim \tan \theta \sim \theta$), and keep only first-order terms (θ) :
$\mathrm{dM} / \rho \mathrm{g} \mathrm{d} \Delta=\left[-\mathrm{KG}+\mathrm{h} / 2+\mathrm{b}^{2} / 12 \mathrm{~h}\right] \theta$

$$
=\left[-K G+A / 2 b+b^{3} / 12 A\right] \theta
$$

For this rectangular slice, the sum [h/2 + $\left.b^{2} / 12 h\right]$ must exceed the distance KG for stability. This sum is called KM - the distance from the keel up to the "virtual" buoyancy center M. M is the METACENTER, and it is as if the block is hanging from M!
$-K G+K M=G M$: the METACENTRIC HEIGHT

How much GM is enough?
Around $2-3 \mathrm{~m}$ in a big boat

Considering the Entire Vessel...

Transverse (or roll) stability is calculated using the same moment calculation extended on the length:
Total Moment = Integral on Length of $\mathrm{dM}(\mathrm{x})$, where (for a vessel with all rectangular cross-sections)

$$
d M(x)=\rho g\left[-K G(x) A(x)+A^{2}(x) / 2 b(x)+b^{3}(x) / 12\right] d x \theta
$$

First term: Same as $-\rho$ g KG Δ, if Δ is the ship's submerged volume, and KG is the value referencing the whole vessel
Second term: Significant if $d>b$ (equivalent to $h^{2} b / 2$)
Third term: depends only on beam - dominant for most monohulls

Longitudinal (or pitch) stability is similarly calculated, but it is usually secondary, since the waterplane area is very long \rightarrow very high GM

Weight Distribution and Trim

- At zero speed, and with no other forces or moments, the vessel has B (submerged) or M (surface) directly above G.

Too bad!

For port-stbd symmetric hulls, keep G on the centerline using a tabulation of component masses and their centroid locations in the hull, i.e., $\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=0$
Longitudinal trim should be zero relative to center of waterplane area, in the loaded condition.
Pitch trim may be affected by forward motion, but difference is usually only a few degrees.

Rotational Dynamics Using the Centroid

Equivalent to

$$
\begin{aligned}
& F=m a \quad \text { in linear case is } \\
& \boldsymbol{T}=\boldsymbol{J}_{\mathbf{o}} * \boldsymbol{d}^{2} \boldsymbol{\theta} / \boldsymbol{d} \mathbf{t}^{2}
\end{aligned}
$$

where T is the sum of acting torques in roll J_{o} is the rotary moment of inertia in roll, referenced to some location O
θ is roll angle (radians)
J written in terms of incremental masses m_{i} :

$$
J_{o}=\Sigma m_{i}\left(y_{i}-y_{o}\right)^{2} \text { OR } J_{g}=\Sigma m_{i}\left(y_{i}-y_{g}\right)^{2}
$$

J written in terms of component masses m_{i} and their own moments of inertia J_{i} (by the parallel axis theorem) :

$$
J_{g}=\Sigma m_{i}\left(y_{i}-y_{g}\right)^{2}+\Sigma J_{i}
$$

The y_{i} 's give position of the centroid of each body, and J_{i} 's are referenced to those centroids

What are the acting torques T ?

- Buoyancy righting moment - metacentric height
- Dynamic loads on the vessel - e.g., waves, wind, movement of components, sloshing
- Damping due to keel, roll dampers, etc.
- Torques due to roll control actuators

An instructive case of damping D, metacentric height $G M$:

$$
J d^{2} \theta / d t^{2}=-D d \theta / d t-G M \rho g \Delta \theta \quad O R
$$

$$
\begin{array}{rlrl}
J d^{2} \theta / d t^{2}+ & D d \theta / d t+G M \rho g \Delta \theta & =0 \\
d^{2} \theta / d t^{2}+ & \text { a d } d \theta / d t+ & b \theta & =0 \\
d^{2} \theta / d t^{2}+2 \zeta \omega_{n} d \theta / d t+ & \omega_{n}^{2} \theta & =0
\end{array}
$$

A second-order stable system \rightarrow Overdamped or oscillatory response from initial conditions

Homogeneous Underdamped Second-Order Systems

$$
\begin{aligned}
& x^{\prime \prime}+a x^{\prime}+b x=0 ; \quad \text { write as } \quad x^{\prime \prime}+2 \zeta \omega_{n} x^{\prime}+\omega_{n}^{2} x=0 \\
& \text { Let } x=x e^{s t} \rightarrow \\
& \left(\mathrm{~s}^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right) \mathrm{e}^{s t}=0 \quad \text { OR } \quad s^{2}+2 \zeta \omega_{n} \mathrm{~s}+\omega_{n}^{2}=0 \rightarrow \\
& \mathrm{~s} \quad=\left[-2 \zeta \omega_{n}+/-\operatorname{sqrt}\left(4 \zeta^{2} \omega_{n}^{2}-4 \omega_{n}^{2}\right)\right] / 2 \\
& \quad=\omega_{n}\left[-\zeta+/-\operatorname{sqrt}\left(\zeta^{2}-1\right)\right] \quad \text { from quadratic equation }
\end{aligned}
$$

s_{1} and s_{2} are complex conjugates if $\zeta<1$, in this case:
$\mathrm{s}_{1}=-\omega_{\mathrm{n}} \zeta+\mathrm{i} \omega_{\mathrm{d}}, \mathrm{s}_{2}=-\omega_{\mathrm{n}} \zeta-\mathrm{i} \omega_{\mathrm{d}} \quad$ where $\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \operatorname{sqrt}\left(1-\zeta^{2}\right)$
Recalling $\mathrm{e}^{r+i \theta}=\mathrm{e}^{r}(\cos \theta+\mathrm{i} \sin \theta)$, we have

$$
\begin{aligned}
\mathrm{X}=\mathrm{e}^{-\zeta \omega \operatorname{sont}}[& \left(\mathrm{X}_{1}^{\mathrm{r}}+\mathrm{i} \mathrm{X}_{1}^{\mathrm{i}}\right)\left(\cos \omega_{\mathrm{d}} \mathrm{t}+\mathrm{i} \sin \omega_{\mathrm{d}} \mathrm{t}\right)+ \\
& \left.\left(\mathrm{X}_{2}^{\mathrm{r}}+\mathrm{i} \mathrm{X}_{2}^{\mathrm{i}}\right)\left(\cos \omega_{\mathrm{d}}^{\mathrm{t}}-\mathrm{i} \sin \omega_{\mathrm{d}} \mathrm{t}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}=-\zeta \omega_{n} x+\omega_{d} e^{-\zeta \omega n t}[& \left(X_{1}{ }^{r}+i X_{1}{ }^{i}\right)\left(-\sin \omega_{d} t+i \cos \omega_{d} t\right)+ \\
& \left.\left(X_{2}{ }^{r}+i X_{2}{ }^{i}\right)\left(-\sin \omega_{d} t-i \cos \omega_{d} t\right)\right]
\end{aligned}
$$

Consider initial conditions $x^{\prime}(0)=0, x(0)=1$:
$x(t=0)=1$ means $\quad X_{1}{ }^{r}+X_{2}{ }^{r}=1 \quad$ (real part) and
$\mathrm{X}_{1}{ }^{\mathrm{i}}+\mathrm{X}_{2}{ }^{\mathrm{i}}=0 \quad$ (imaginary part)
$\mathrm{x}^{\prime}(\mathrm{t}=0)=0$ means $\quad \mathrm{X}_{1}{ }^{\mathrm{r}}-\mathrm{X}_{2}{ }^{\mathrm{r}}=0 \quad$ (imaginary part) and

$$
-\zeta \omega_{\mathrm{n}}+\omega_{\mathrm{d}}\left(\mathrm{X}_{2}{ }^{\mathrm{i}}-\mathrm{X}_{1}{ }^{\mathrm{i}}\right)=0 \quad \text { (real part) }
$$

Combine these and we find that

$$
\begin{aligned}
& \mathrm{X}_{1}^{\mathrm{r}}=\mathrm{X}_{2}^{\mathrm{r}}=1 / 2 \\
& \mathrm{X}_{1}{ }^{\mathrm{i}}=-\mathrm{X}_{2}^{\mathrm{i}}=-\zeta \omega_{\mathrm{n}} / 2 \omega_{\mathrm{d}}
\end{aligned}
$$

Plug into the solution for x and do some trig:
$\mathbf{x}=\mathbf{e}^{-\zeta \omega \mathrm{nt}} \sin \left(\omega_{\mathrm{d}} \mathbf{t}+\mathbf{k}\right) / \operatorname{sqrt}\left(1-\zeta^{2}\right)$, where $k=\operatorname{atan}\left(\omega_{\mathrm{d}} / \zeta \omega_{\mathrm{n}}\right)$
$\zeta=0.0$ has fastest rise time but no decay
$\zeta=0.2$ gives about 50\% overshoot
$\zeta=0.5$ gives about 15\% overshoot
$\zeta=1.0$ gives the fastest response without overshoot
$\zeta>1.0$ is slower

Response to I.C. of Second-Order System with Varying Damping Ratio

STABILITY REFERENCE POINTS

LINEAR MEASUREMENTS IN STABILITY

CL

THE CENTER OF BUOYANCY

WATERLINE

CENTER OF BUOYANCY

CENTER OF BUOYANCY

- The freeboard and reserve buoyancy will also change

MOVEMENTS IN THE CENTER OF GRAVITY

G MOVES TOWARDS A WEIGHT ADDITION

MOVEMENTS IN THE CENTER OF GRAVITY

G MOVES AWAY FROM A WEIGHT REMOVAL

MOVEMENTS IN THE CENTER OF GRAVITY

G MOVES IN THE DIRECTION OF A WEIGHT SHIFT

DISPLACEMENT = SHIP'S WIEGHT

METACENTER

$0^{\circ}-7 / 10^{\circ}$

+GM

$+G M$

neutral GM

-GM

MOVEMENTS OF THE METACENTER

THE METACENTER WILL CHANGE POSITIONS IN THE VERTICAL PLANE WHEN THE SHIP'S DISPLACEMENT CHANGES

THE METACENTER MOVES IAW THESE TWO RULES:
1. WHEN B MOVES UP, M MOVES DOWN. 2. WHEN B MOVES DOWN, M MOVES UP.

Righting Arm

Righting Arm

Righting Arm for Various Conditions

THINGS TO CONSIDER

- Effects of:
- Weight addition/subtraction and movement
- Ballasting and loading/unloading operations
- Wind, Icing
- Damage stability
- result in an adverse movement of G or B
- sea-keeping characteristics will change
- compensating for flooding (ballast/completely flood a compartment)
- maneuvering for seas/wind

References

- NSTM 079 v. I Buoyancy \& Stability
- NWP 3-20.31 Ship Survivability
- Ship’s Damage Control Book
- Principles of Naval Architecture v. I

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

