Design for the Ocean Environment

Some Major Considerations

- Hydrostatic pressure
- Heat dissipation in housings
- Waves
- Forces on bodies in steady flow
- But don't forget:

wind and rain, corrosion, biofouling, material fatigue, creep, chemical breakdown, human safety, regulations, etc.

	Young's Modulus, Pascals	Ultimate Strength, Pascals	Coefficient of thermal conductivity W m / m ² °K	of , Density, kg/m ³
Steel	200e9	550e6	4400	8000
Aluminum	70e9	480e6	22000	2700
Titanium	100e9	1400e6	1500	4900
Glass	70e9	<35000e6 (compression!)	100	2600
ABS Plastic	1.3e9	34e6	LOW	~1100
Mineral oil		-	17	~900
Water	2.3e9	-	60	1000

Wave Fields

Definition:

SeaState	Height (ft)	Period (s)	Wind (kr	nots)
2	1	7	9	
3	3	8	14	W_{ave} height \overline{H}
4	6	9	19	Significant ways:
5	11	10	24	Significant wave.
6	16	12	37	Average of one-third
7	25	15	51	highest waves

Distribution:

30% of world oceans are at 0-1m height

41%	1-2m	
17%	2-3m	
6%	3-4m	Wave fields depend on
2%	4-5m	storms, fetch, topography

Short-Term Statistics of Extreme Waves

- Average of one-third highest waves is significant wave height H_{sig} or $\overline{H}_{1/3} = 4 \sigma$
- An observer will usually report $\overline{H}_{1/3}$

•
$$\overline{H}_{1/10} = 1.27 * H_{sig}$$

• Expected maxima: N = 100; 1.6 * $\overline{H}_{1/3}$

N = 1000 ; 1.9 *
$$\overline{H}_{1/3}$$

N = 10000 ; 2.2 * $\overline{H}_{1/3}$

Fig. 22 Typical contour plot of the sea—from stereo photos Principles of Naval Architecture, E.V. Lewis, ed., SNAME, 1989.

Originally published in Lewis, Edward V. *Principles of Naval Architecture*. *Vol. 3: Motions in Waves and Controllability*. Jersey City, NJ: SNAME, 1989. Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME). http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx

http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx

Sea	Significan Height	t Wave (m)	Significan Height	t Wave (ft)	Vave Sustained Wind t) Speed (Knots)* Percentage		Modal Wave Period (Sec)		
State Number	Range	Mean	Range	Mean	Range	Mean	Probability of Sea State	Range**	Most Probable***
0-1	0-0.1	0.05	0-0.3	0.15	0-6	3	0.70		
2	0.1 - 0.5	0.3	0.3 - 1.6	1.0	7-10	8.5	6.80	3.3 - 12.8	7.5
3	0.5 - 1.25	0.88	1.6 - 4.1	2.9	11-16	13.5	23.70	5.0-14.8	7.5
4	1.25 - 2.5	1.88	4.1-8.2	6.2	17-21	19	27.80	6.1 - 15.2	8.8
5	2.5-4	3.25	8.2 - 13.1	10.7	22-27	24.5	20.64	8.3-15.5	9.7
6	4-6	5	13.1 - 19.7	16.4	28-47	37.5	13.15	9.8 - 16.2	12.4
7	6-9	7.5	19.7-29.5	24.6	48-55	51.5	6.05	11.8-18.5	15.0
8	9-14	11.5	29.5-45.9	37.7	56-63	59.5	1.11	14.2-18.6	16.4
>8	>14	>14	> 45.9	45.9	> 63	> 63	0.05	18.0-23.7	20.0

Table 6---Annual Sea-State Occurrences in the Open Ocean, North Atlantic

Table 7—Annual Sea State Occurrences in the Open Ocean, North Pacific

Sea	Significan Height	t Wave (m)	Significant Height	t Wave (ft)	Sustained Wind Speed (Knots)* Percentage		Modal Wave Period (Sec)		
State Number	Range	Mean	Range	Mean	Range	Mean	Probability of Sea State	Range**	Most Probable***
0-1	0-0.1	0.05	3-0.3	0.15	0-6	3	1.30		
2	0.1 - 0.5	0.3	0.3 - 1.6	1.0	7-10	8.5	6.40	5.1 - 14.9	6.3
3	0.5 - 1.25	0.88	1.6 - 4.1	2.9	11-16	13.5	15.50	5.3 - 16.1	7.5
4	1.25-2.5	1.88	4.1-8.2	6.2	17-21	19	31.60	6.1 - 17.2	8.8
5	2.5-4	3.25	8.2 - 13.1	10.7	22-27	24.5	20.94	7.7-17.8	9.7
6	4-6	5	13.1-19.7	16.4	28-47	37.5	15.03	10.0-18.7	12.4
7	6-9	7.5	19.7-29.5	24.6	48-55	51.5	7.60	11.7-19.8	15.0
8	9-14	11.5	29.5-45.9	37.7	56-63	59.5	1.56	14.5-21.5	16.4
>8	>14	>14	>45.9	45.9	> 63	> 63	0.07	16.4 - 22.5	20.0

* Ambient wind sustained at 19.5 m above surface to generate fully-developed seas. To convert to another altitude, H_2 , apply $V_2 = V_1(H_2/19.5)^{1/7}$ ** Minimum is 5 percentile and maximum is 95 percentile for periods given wave height range. *** Based on periods associated with central frequencies included in Hindcast Climatology.

Source: Lee and Bales (1984).

Principles of Naval Architecture, E.V. Lewis, ed., SNAME, 1989.

Originally published in Lewis, Edward V. Principles of Naval Architecture. *Vol. 3: Motions in Waves and Controllability.* Jersey City, NJ: SNAME, 1989. Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME). http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx

Table 5—Observed Percentage Frequency of Occurrence of Wave Heights and Periods (Hogben and Lumb data)Northern North Atlantic

Wave				W	ave Perio	d T_1 , sec					
eight, m	2.5	6.5	8.5	10.5 ´	12.5	14.5	16.5	18.5	20.5	Over 21	Total
$\begin{array}{c} 0-1 \\ 1-2 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \\ 6-7 \\ 7-8 \\ 8-9 \\ 9-10 \\ 10-11 \\ 11+ \end{array}$	$13.7204 \\ 11.4889 \\ 1.5944 \\ 0.3244 \\ 0.1027 \\ 0.0263 \\ 0.0277 \\ 0.0084 \\ 0.0037 \\ 0.0034 \\$	3.4934 15.5036 7.8562 2.2487 0.7838 0.1456 0.1477 0.0714 0.0325 0.0204 0.0005 0.0005	$\begin{array}{c} 0.8559\\ 6.4817\\ 8.0854\\ 4.0393\\ 1.6998\\ 0.3749\\ 0.3614\\ 0.1882\\ 0.0856\\ 0.0674\\ 0.0012\\ 0.0007\end{array}$	$\begin{array}{c} 0.3301 \\ 1.8618 \\ 3.7270 \\ 2.9762 \\ 1.5882 \\ 0.4038 \\ 0.4472 \\ 0.2199 \\ 0.1252 \\ 0.1173 \\ 0.0023 \\ 0.0019 \end{array}$	$\begin{array}{c} 0.1127\\ 0.5807\\ 1.1790\\ 1.3536\\ 0.9084\\ 0.2493\\ 0.2804\\ 0.1634\\ 0.1119\\ 0.0983\\ 0.0031\\ 0.0035\end{array}$	$\begin{array}{c} 0.0438\\ 0.1883\\ 0.3713\\ 0.4477\\ 0.3574\\ 0.1200\\ 0.1301\\ 0.0785\\ 0.0558\\ 0.0558\\ 0.0550\\ 0.0012\\ 0.0002 \end{array}$	$\begin{array}{c} 0.0249\\ 0.0671\\ 0.1002\\ 0.1307\\ 0.1443\\ 0.0382\\ 0.0504\\ 0.0353\\ 0.0303\\ 0.0303\\ 0.0303\end{array}$	0.0172 0.0254 0.0321 0.0428 0.0433 0.0067 0.0113 0.0069 0.0045 0.0173 0.0005	$\begin{array}{c} 0.0723\\ 0.0203\\ 0.0091\\ 0.0050\\ 0.0072\\ 0.0027\\ 0.0011\\ 0.0018\\ 0.0027\\ 0.0079\\ 0.0005\end{array}$	$\begin{array}{c} 0.3584\\ 0.0763\\ 0.0082\\ 0.0040\\ 0.0049\\ 0.0027\\ 0.0032\\ 0.0034\\ 0.0033\\ 0.0047\end{array}$	$\begin{array}{c} 19.0291\\ 36.2941\\ 22.9629\\ 11.5724\\ 5.6400\\ 1.3702\\ 1.4605\\ 0.7772\\ 0.4555\\ 0.4220\\ 0.0088\\ 0.0073\end{array}$
Totals	27.3003	30.3043	22.2415	11.8009	5.0143	1.8493	0.6517	0.2080	0.1306	0.4691	100.000

Principles of Naval Architecture, E.V. Lewis, ed., SNAME, 1989.

Originally published in Lewis, Edward V. *Principles of Naval Architecture. Vol. 3: Motions in Waves and Controllability.* Jersey City, NJ: SNAME, 1989. Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME). http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx

Massachusetts Institute of Technology 2.017

Massachusetts Institute of Technology 2.017

Massachusetts Institute of Technology 2.017

Vehicles: Some Basic Catagories

- Streamlined vs. Bluff Bodies
 - Bluff: Cylinders, blocks, higher drag, lower lift, large-scale separation and wake
 - Streamlined: airplanes and ship hulls, Lower drag but higher lift, avoids separation to minimize wake
 - Tradeoff in Directional Stability of the body:
 - A fully streamlined fuselage/fairing is unstable.
 - Drag aft adds stability, e.g., a bullet
 - Wings aft add stability, e.g., fins, stabilizers
 - Wings forward decrease stability, but improve maneuverability.
- Turbulent vs. Laminar flow
- High- vs. low-speed flow

Concept of Drag, Lift, Moment (2D)

Typical nondimensionalization:

Drag = $\frac{1}{2} \rho U^2 A C_d$, where A is (typically) frontal area or wetted area Lift = $\frac{1}{2} \rho U^2 A C_l$, where A is usually a planform area Moment = $\frac{1}{2} \rho U^2 DL^2 C_m$, where L is characteristic body length, and D is characteristic width (or diameter)

Aerodynamic Center

Consider streamlined, balanced (symmetric) forms in free flight.

Aerodynamic center is the location on the body of lift force that would create the observed moment, e.g.,

 $\mathbf{X}_{\mathsf{A}\mathsf{C}} = \mathbf{C}_{\mathsf{m}} \, \mathsf{D}\mathsf{L}^2 \, / \, \mathbf{C}_{\mathsf{L}} \, \mathsf{A} \, ,$

referenced to the same location as for C_{m}

- For an Odyssey-like shape, x_{AC} is up to one body length forward of the nose → Extremely unstable!
- For a typical zero-camber foil section, x_{AC} is around 20-30% of the chord length aft from the leading edge → more stable but can flutter

Streamlined Vehicle Design using Aft Lifting Surfaces

Body is neutrally directionally stable if sum of moments about center of mass is zero:

 $\Sigma M \sim L_{body} x_{AC} + L_{fins} x_{fins} + D_{fins} x_{fins} \alpha$

Origins of the Destabilizing Moment: Slender-Body Theory

Derivative of property ζ with the particle motion: $D\zeta/Dt = \lim (\zeta(t+\delta t,x+\delta x) - \zeta(t,x)) / \delta t$ $= \zeta_t + \zeta_x \delta x / \delta t$ (Taylor series expansion) $= \zeta_t + \zeta_x U$ $= (d/dt + U d/dx) \zeta$

-Uwm₃

δF

Diff. lateral force on body is derivative of fluid momentum (as drawn):

$$\delta F = D(m_a(x) \le \delta x)/Dt = (d/dt + U d/dx) (m_a(x) \le \delta x)$$

Assume steady-state and uniform cross-section so all d()/dt = 0 \rightarrow

$$\delta F = U d/dx (m_a(x) w \delta x)$$

Integrate by parts to get the moment:

$$M = \int x \, \delta F = U \, w \left[x_{\text{stern}} \, m_a \left(x_{\text{stern}} \right) - x_{\text{bow}} \, m_a(x_{\text{bow}}) - \int m_a(x) \, dx \right]$$

Forces in steady flow

- Streamlined vs. Bluff Bodies
 - Bluff: Cylinders, blocks, higher drag, lower lift, largescale separation and wake
 - Streamlined: airplanes and ship hulls, Lower drag but higher lift, avoids separation to minimize wake
 - Tradeoff in Directional Stability of the body:
 - A fully streamlined fuselage/fairing is unstable.
 - Drag aft adds stability, e.g., a bullet
 - Wings aft add stability, e.g., fins, stabilizers
 - Wings forward decrease stability, but improve maneuverability.
- Turbulent vs. Laminar flow
- High- vs. low-speed flow

Typical Drag Coefficients (frontal area)

AR=1

- Square cylinder section
- **Diamond cylinder section**
- Thin rect. plate
- Circular cylinder section
- Circular cylinder end on
- 1920 Automobile
- Volkswagon Bus
- Modern Automobile
- MIT Solar Car?

2.0 1.6 1.1 1.5 2.0 1.1 1.0 0.9 0.42 < 0.3

Fig. 132 Free-stream characteristics of an NACA 0015 section in ahead condition of a Reynolds number of 2.70 imes 10⁶ (Whicker and Fehlner, 1958)

Fig. 133 Free-stream characteristics of an NACA 0015 section in astern condition at a Reynolds number of 3.00 \times 10° (Whicker and Fehlner, 1958)

Figures from PNA

Originally published in Lewis, Edward V. *Principles of Naval Architecture. Vol. 3: Motions in Waves and Controllability.* Jersey City, NJ: SNAME, 1989. Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME). http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx

Originally published in Lewis, Edward V. *Principles of Naval Architecture. Vol. 3: Motions in Waves and Controllability.* Jersey City, NJ: SNAME, 1989. Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME). http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx Images removed due to copyright restrictions. Please see Fig. 30-33 in Hoerner, Sighard F., and Henry V. Borst. Fluid-Dynamic Lift. Bakersfield, CA: Hoerner Fluid Dynamics.

Recommended References

- Fluid-Dynamic Lift. S.F. Hoerner, 1975, Hoerner Fluid Dynamics, Bakersfield, CA.
- Principles of Naval Architecture, Volume III (Motions in Waves and Controllability), E.V. Lewis, ed., 1989, SNAME, Jersey City, NJ.
- Fluid Mechanics, M.C. Potter and J.F. Foss, 1982, Great Lakes Press, Okemo, MI.
- Theory of Flight, R. von Mises, 1945, Dover, New York.
- <u>http://naca.larc.nasa.gov/</u>: NACA reports on bodies and surfaces

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.