
√ √ ∑ 

13 MATH FACTS 101 

13 MATH FACTS 

13.1 Vectors 

13.1.1 Definition 

We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. 
For example, in three-space, we write a vector in terms of its components with respect to a 
reference system as 

⎧ ⎫ ⎪ 2 ⎪ ⎨ ⎬ 
�a = 1 . ⎪ ⎪ ⎩ ⎭7 

The elements of a vector have a graphical interpretation, which is particularly easy to see in 
two or three dimensions. 

1. Vector addition:


�a +�b = �c


⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ 2 ⎪ ⎪ 3 ⎪ ⎪ 5 ⎪ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ 
1 + 3 = 4 . ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭7 2 9


Graphically, addition is stringing the vectors together head to tail.


2. Scalar multiplication: 
⎧ ⎫ ⎧ ⎫ ⎪ 2 ⎪ ⎪ −4 ⎪ ⎨ ⎬ ⎨ ⎬ 

−2 × 1 = −2 . ⎪ ⎪ ⎪ ⎪ ⎩ 7 ⎭ ⎩ −14 ⎭ 

13.1.2 Vector Magnitude 

The total length of a vector of dimension m, its Euclidean norm, is given by 

√ m 

||�x|| = √ x2 
i . 

i=1 

This scalar is commonly used to normalize a vector to length one. 
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13.1.3 Vector Dot or Inner Product 

The dot product of two vectors is a scalar equal to the sum of the products of the corre
sponding components: 

m 

�x · �y = �x T �y = xiyi. 
i=1 

The dot product also satisfies 

�x · �y = ||�x||||�y|| cos θ, 

where θ is the angle between the vectors. 

13.1.4 Vector Cross Product 

The cross product of two three-dimensional vectors �x and �y is another vector �z, �x × �y = �z, 
whose 

1. direction is normal to the plane formed by the other two vectors, 

2. direction is given by the right-hand rule, rotating from �x to �y, 

3. magnitude is the	 area of the parallelogram formed by the two vectors – the cross 
product of two parallel vectors is zero – and 

4. (signed) magnitude is equal to ||� y|| sin θ, where θ is the angle between the two x||||�

vectors, measured from �x to �y.


In terms of their components, ⎧	 ⎫ ∣	 i j ˆ ∣ ⎪ i ⎪ˆ ˆ k	 ⎪ (x2y3 − x3y2)̂ ⎪ ∣ ∣ ⎨	 ⎬ 
�x × �y = ∣ x1 x2 x3 ∣ = (x3y1 − x1y3)ĵ . ∣ ∣ ⎪	 ⎪ ⎪	 ⎪ ∣ y1 y2 y3 

∣ ⎩ (x1y2 − x2y1)k̂ ⎭ 

13.2 Matrices 

13.2.1 Definition 

A matrix, or array, is equivalent to a set of column vectors of the same dimension, arranged 
side by side, say ⎡ ⎤ 

2 3  ⎢ ⎥
A = [�a �b] =  ⎣	 1 3  ⎦ . 

7 2  
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This matrix has three rows (m = 3) and two columns (n = 2); a vector is a special case of a 
matrix with one column. Matrices, like vectors, permit addition and scalar multiplication. 
We usually use an upper-case symbol to denote a matrix. 

13.2.2 Multiplying a Vector by a Matrix 

If Aij denotes the element of matrix A in the i’th row and the j’th column, then the multi
plication �c = A�v is constructed as: 

n 

ci = Ai1v1 + Ai2v2 + · · · + Ainvn = Aij vj , 
j=1 

where n is the number of columns in A. �c will have as many rows as A has rows (m). Note 
that this multiplication is defined only if �v has as many rows as A has columns; they have 
consistent inner dimension n. The product �vA would be well-posed only if A had one row, 
and the proper number of columns. There is another important interpretation of this vector 
multiplication: Let the subscript : indicate all rows, so that each A:j is the j’th column 
vector. Then 

�c = A�v = A:1v1 + A:2v2 + · · · + A:nvn. 

We are multiplying column vectors of A by the scalar elements of �v. 

13.2.3 Multiplying a Matrix by a Matrix 

The multiplication C = AB is equivalent to a side-by-side arrangement of column vectors 
C:j = AB:j , so that 

C = AB = [AB:1 AB:2 · · ·  AB:k], 

where k is the number of columns in matrix B. The same inner dimension condition applies 
as noted above: the number of columns in A must equal the number of rows in B. Matrix 
multiplication is: 

1. Associative. (AB)C = A(BC). 

2. Distributive. A(B + C) =  AB + AC, (B + C)A = BA + CA. 

3. NOT Commutative. AB �= BA, except in special cases. 
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13.2.4	 Common Matrices 

Identity. The identity matrix is usually denoted I, and comprises a square matrix with 
ones on the diagonal, and zeros elsewhere, e.g., ⎡ ⎤ 

1 0 0  ⎢ ⎥I3×3 = ⎣	 0 1 0  ⎦ . 
0 0 1  

The identity always satisfies AIn×n = Im×mA = A. 

Diagonal Matrices. A diagonal matrix is square, and has all zeros off the diagonal. For 
instance, the following is a diagonal matrix: ⎡ ⎤ 

4 0 0 ⎢ ⎥
A = ⎣	 0 − 2 0  ⎦ . 

0 0 3 

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case 
the operation is commutative. 

13.2.5	 Transpose 

The transpose of a vector or matrix, indicated by a T superscript results from simply swap
ping the row-column indices of each entry; it is equivalent to “flipping” the vector or matrix 
around the diagonal line. For example, ⎧ ⎫ ⎪ 1 ⎪ ⎨ ⎬ 

�a = 2 −→ �a T = { 1 2 3}⎪ ⎪ ⎩ ⎭3 ⎡	 ⎤ 
1 2  

A = ⎢⎣ 4 5  ⎥⎦ −→ AT = 
1 4 8  

. 
2 5 9  

8 9  

A very useful property of the transpose is 

(AB)T = BT AT . 

13.2.6	 Determinant 

The determinant of a square matrix A is a scalar equal to the volume of the parallelepiped 
enclosed by the constituent vectors. The two-dimensional case is particularly easy to re
member, and illustrates the principle of volume: 

det(A) =  A11A22 − A21A12 
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([ 
1 

det 
1 

−1 
]) 

1 
=  1  +  1 = 2. 

1 

1 

x1 

x2 

In higher dimensions, the determinant is more complicated to compute. The general formula 
allows one to pick a row k, perhaps the one containing the most zeros, and apply 

j=n 

det(A) =  Akj(−1)k+jΔkj, 
j=1 

where Δkj is the determinant of the sub-matrix formed by neglecting the k’th row and the 
j’th column. The formula is symmetric, in the sense that one could also target the k’th 
column: 

j=n 

det(A) =  Ajk(−1)k+jΔjk. 
j=1 

If the determinant of a matrix is zero, then the matrix is said to be singular – there is no 
volume, and this results from the fact that the constituent vectors do not span the matrix 
dimension. For instance, in two dimensions, a singular matrix has the vectors colinear; in 
three dimensions, a singular matrix has all its vectors lying in a (two-dimensional) plane. 
Note also that det(A) =  det(AT ). If det(A) = 0, then the matrix is said to be nonsingular. 

13.2.7 Inverse 

The inverse of a square matrix A, denoted A−1, satisfies AA−1 = A−1A = I. Its computation 
requires the determinant above, and the following definition of the n × n adjoint matrix: 

⎡ ⎤T 
(−1)1+1Δ11 (−1)1+nΔ1n · · ·  ⎢ ⎥adj(A) =  ⎣ · · ·  · · ·  · · ·  ⎦ . 
(−1)n+1Δn1 · · ·  (−1)n+nΔnn. 
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Once this computation is made, the inverse follows from 

A−1 = 
adj(A) 

. 
det(A) 

If A is singular, i.e., det(A) = 0, then the inverse does not exist. The inverse finds common 
application in solving systems of linear equations such as 

A�x = �b −→ �x = A−1�b. 

13.2.8 Eigenvalues and Eigenvectors 

A typical eigenvalue problem is stated as 

A�x = λ�x, 

where A is an n × n matrix, �x is a column vector with n elements, and λ is a scalar. We ask 
for what nonzero vectors �x (right eigenvectors), and scalars λ (eigenvalues) will the equation 
be satisfied. Since the above is equivalent to (A − λI)�x = �0, it is clear that det(A − λI) = 0.  
This observation leads to the solutions for λ; here is an example for the two-dimensional 
case: 

4 − 5 
A = −→ 

2 − 3 

4 − λ − 5 
A − λI = −→ 

2 − 3 − λ 

det(A − λI) = (4  − λ)(− 3 − λ) + 10  

= λ2 − λ − 2 

= (λ + 1)(λ − 2). 

Thus, A has two eigenvalues, λ1 = − 1 and λ2 = 2. Each is associated with a right eigenvector 
�x. In this example, 

(A − λ1I)�x1 = �0 −→ 
5 − 5 

�x1 = �0 −→ 
2 − 2 {√ √ }T 

�x1 = 2/2, 2/2 

(A − λ2I)�x2 = �0 −→ 
2 − 5 

�x2 = �0 −→ 
2 − 5 { √ √ }T 

�x2 = 5 29/29, 2 29/29 . 



[ ] 

[ ] 

13 MATH FACTS 107 

Eigenvectors are defined only within an arbitrary constant, i.e., if �x is an eigenvector then c�x 
is also an eigenvector for any c � = 0. They are often normalized to have unity magnitude, and 
positive first element (as above). The condition that rank(A − λiI) =  rank(A) − 1 indicates 
that there is only one eigenvector for the eigenvalue λi; more precisely, a unique direction 
for the eigenvector, since the magnitude can be arbitrary. If the left-hand side rank is less 
than this, then there are multiple eigenvectors that go with λi. 

The above discussion relates only the right eigenvectors, generated from the equation A�x = 
λ�x. Left eigenvectors, defined as �yT A = λ�yT , are also useful for many problems, and can 
be defined simply as the right eigenvectors of AT . A and AT share the same eigenvalues λ, 
since they share the same determinant. Example: 

(AT − λ1I)�y1 = �0 −→ 
5 2 

�y1 = �0 −→ − 5 − 2 { √ √ }T 
�y1 = 2 29/29, − 5 29/29 

(AT − λ2I)�y2 = �0 −→ 
2 2 

− 5 − 5 
�y2 = �0 −→ 

{√ √ }T 
�y2 = 2/2, − 2/2 . 

13.2.9 Modal Decomposition 

For simplicity, we consider matrices that have unique eigenvectors for each eigenvalue. The 
right and left eigenvectors corresponding to a particular eigenvalue λ can be defined to have 
unity dot product, that is �xi

T �yi = 1, with the normalization noted above. The dot products 
of a left eigenvector with the right eigenvectors corresponding to different eigenvalues are 
zero. Thus, if the set of right and left eigenvectors, V and W , respectively, is 

V = [�x1 · · ·  �xn] , and 

W = [�y1 · · ·  �yn] , 

then we have 

W T V = I, or 


W T = V −1 .


Next, construct a diagonal matrix containing the eigenvalues: ⎡ ⎤ 
λ1 0 ⎢ ⎥Λ =  ⎣ · ⎦ ; 
0 λn 
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it follows that 

AV = V Λ −→ 

A = V ΛW T 

n 

= λi�viw� i
T . 

i=1 

Hence A can be written as a sum of modal components.3 

3By carrying out successive multiplications, it can be shown that Ak has its eigenvalues at λk
i , and keeps 

the same eigenvectors as A. 
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