13 MATH FACTS

13.1 Vectors

13.1.1 Definition

We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms of its components with respect to a reference system as

$$
\vec{a}=\left\{\begin{array}{l}
2 \\
1 \\
7
\end{array}\right\} .
$$

The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

1. Vector addition:

$$
\begin{gathered}
\vec{a}+\vec{b}=\vec{c} \\
\left\{\begin{array}{l}
2 \\
1 \\
7
\end{array}\right\}+\left\{\begin{array}{l}
3 \\
3 \\
2
\end{array}\right\}=\left\{\begin{array}{l}
5 \\
4 \\
9
\end{array}\right\} .
\end{gathered}
$$

Graphically, addition is stringing the vectors together head to tail.
2. Scalar multiplication:

$$
-2 \times\left\{\begin{array}{l}
2 \\
1 \\
7
\end{array}\right\}=\left\{\begin{array}{c}
-4 \\
-2 \\
-14
\end{array}\right\}
$$

13.1.2 Vector Magnitude

The total length of a vector of dimension m, its Euclidean norm, is given by

$$
\|\vec{x}\|=\sqrt{\sum_{i=1}^{m} x_{i}^{2}}
$$

This scalar is commonly used to normalize a vector to length one.

13.1.3 Vector Dot or Inner Product

The dot product of two vectors is a scalar equal to the sum of the products of the corresponding components:

$$
\vec{x} \cdot \vec{y}=\vec{x}^{T} \vec{y}=\sum_{i=1}^{m} x_{i} y_{i}
$$

The dot product also satisfies

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos \theta,
$$

where θ is the angle between the vectors.

13.1.4 Vector Cross Product

The cross product of two three-dimensional vectors \vec{x} and \vec{y} is another vector $\vec{z}, \vec{x} \times \vec{y}=\vec{z}$, whose

1. direction is normal to the plane formed by the other two vectors,
2. direction is given by the right-hand rule, rotating from \vec{x} to \vec{y},
3. magnitude is the area of the parallelogram formed by the two vectors - the cross product of two parallel vectors is zero - and
4. (signed) magnitude is equal to $\|\vec{x}\|\|\vec{y}\| \sin \theta$, where θ is the angle between the two vectors, measured from \vec{x} to \vec{y}.

In terms of their components,

$$
\vec{x} \times \vec{y}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=\left\{\begin{array}{c}
\left(x_{2} y_{3}-x_{3} y_{2}\right) \hat{i} \\
\left(x_{3} y_{1}-x_{1} y_{3}\right) \hat{j} \\
\left(x_{1} y_{2}-x_{2} y_{1}\right) \hat{k}
\end{array}\right\}
$$

13.2 Matrices

13.2.1 Definition

A matrix, or array, is equivalent to a set of column vectors of the same dimension, arranged side by side, say

$$
A=\left[\begin{array}{ll}
\vec{a} & \vec{b}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 3 \\
7 & 2
\end{array}\right]
$$

This matrix has three rows $(m=3)$ and two columns $(n=2)$; a vector is a special case of a matrix with one column. Matrices, like vectors, permit addition and scalar multiplication. We usually use an upper-case symbol to denote a matrix.

13.2.2 Multiplying a Vector by a Matrix

If $A_{i j}$ denotes the element of matrix A in the i 'th row and the j^{\prime} th column, then the multiplication $\vec{c}=A \vec{v}$ is constructed as:

$$
c_{i}=A_{i 1} v_{1}+A_{i 2} v_{2}+\cdots+A_{i n} v_{n}=\sum_{j=1}^{n} A_{i j} v_{j}
$$

where n is the number of columns in $A . \vec{c}$ will have as many rows as A has rows (m). Note that this multiplication is defined only if \vec{v} has as many rows as A has columns; they have consistent inner dimension n. The product $\vec{v} A$ would be well-posed only if A had one row, and the proper number of columns. There is another important interpretation of this vector multiplication: Let the subscript : indicate all rows, so that each $A_{: j}$ is the j 'th column vector. Then

$$
\vec{c}=A \vec{v}=A_{: 1} v_{1}+A_{: 2} v_{2}+\cdots+A_{: n} v_{n} .
$$

We are multiplying column vectors of A by the scalar elements of \vec{v}.

13.2.3 Multiplying a Matrix by a Matrix

The multiplication $C=A B$ is equivalent to a side-by-side arrangement of column vectors $C_{: j}=A B_{: j}$, so that

$$
C=A B=\left[\begin{array}{llll}
A B_{: 1} & A B_{: 2} & \cdots & A B_{: k}
\end{array}\right],
$$

where k is the number of columns in matrix B. The same inner dimension condition applies as noted above: the number of columns in A must equal the number of rows in B. Matrix multiplication is:

1. Associative. $(A B) C=A(B C)$.
2. Distributive. $A(B+C)=A B+A C,(B+C) A=B A+C A$.
3. NOT Commutative. $A B \neq B A$, except in special cases.

13.2.4 Common Matrices

Identity. The identity matrix is usually denoted I, and comprises a square matrix with ones on the diagonal, and zeros elsewhere, e.g.,

$$
I_{3 \times 3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The identity always satisfies $A I_{n \times n}=I_{m \times m} A=A$.

Diagonal Matrices. A diagonal matrix is square, and has all zeros off the diagonal. For instance, the following is a diagonal matrix:

$$
A=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case the operation is commutative.

13.2.5 Transpose

The transpose of a vector or matrix, indicated by a T superscript results from simply swapping the row-column indices of each entry; it is equivalent to "flipping" the vector or matrix around the diagonal line. For example,

$$
\begin{aligned}
& \vec{a}=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \longrightarrow \vec{a}^{T}=\left\{\begin{array}{lll}
1 & 2 & 3
\end{array}\right\} \\
& A=\left[\begin{array}{ll}
1 & 2 \\
4 & 5 \\
8 & 9
\end{array}\right] \longrightarrow A^{T}=\left[\begin{array}{lll}
1 & 4 & 8 \\
2 & 5 & 9
\end{array}\right] .
\end{aligned}
$$

A very useful property of the transpose is

$$
(A B)^{T}=B^{T} A^{T}
$$

13.2.6 Determinant

The determinant of a square matrix A is a scalar equal to the volume of the parallelepiped enclosed by the constituent vectors. The two-dimensional case is particularly easy to remember, and illustrates the principle of volume:

$$
\operatorname{det}(A)=A_{11} A_{22}-A_{21} A_{12}
$$

$$
\operatorname{det}\left(\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\right)=1+1=2
$$

In higher dimensions, the determinant is more complicated to compute. The general formula allows one to pick a row k, perhaps the one containing the most zeros, and apply

$$
\operatorname{det}(A)=\sum_{j=1}^{j=n} A_{k j}(-1)^{k+j} \Delta_{k j}
$$

where $\Delta_{k j}$ is the determinant of the sub-matrix formed by neglecting the k 'th row and the j 'th column. The formula is symmetric, in the sense that one could also target the k 'th column:

$$
\operatorname{det}(A)=\sum_{j=1}^{j=n} A_{j k}(-1)^{k+j} \Delta_{j k}
$$

If the determinant of a matrix is zero, then the matrix is said to be singular - there is no volume, and this results from the fact that the constituent vectors do not span the matrix dimension. For instance, in two dimensions, a singular matrix has the vectors colinear; in three dimensions, a singular matrix has all its vectors lying in a (two-dimensional) plane. Note also that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. If $\operatorname{det}(A) \neq 0$, then the matrix is said to be nonsingular.

13.2.7 Inverse

The inverse of a square matrix A, denoted A^{-1}, satisfies $A A^{-1}=A^{-1} A=I$. Its computation requires the determinant above, and the following definition of the $n \times n$ adjoint matrix:

$$
\operatorname{adj}(A)=\left[\begin{array}{ccc}
(-1)^{1+1} \Delta_{11} & \cdots & (-1)^{1+n} \Delta_{1 n} \\
\cdots & \cdots & \cdots \\
(-1)^{n+1} \Delta_{n 1} & \cdots & (-1)^{n+n} \Delta_{n n} .
\end{array}\right]^{T}
$$

Once this computation is made, the inverse follows from

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}
$$

If A is singular, i.e., $\operatorname{det}(A)=0$, then the inverse does not exist. The inverse finds common application in solving systems of linear equations such as

$$
A \vec{x}=\vec{b} \longrightarrow \vec{x}=A^{-1} \vec{b}
$$

13.2.8 Eigenvalues and Eigenvectors

A typical eigenvalue problem is stated as

$$
A \vec{x}=\lambda \vec{x}
$$

where A is an $n \times n$ matrix, \vec{x} is a column vector with n elements, and λ is a scalar. We ask for what nonzero vectors \vec{x} (right eigenvectors), and scalars λ (eigenvalues) will the equation be satisfied. Since the above is equivalent to $(A-\lambda I) \vec{x}=\overrightarrow{0}$, it is clear that $\operatorname{det}(A-\lambda I)=0$. This observation leads to the solutions for λ; here is an example for the two-dimensional case:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right] \longrightarrow \\
A-\lambda I & =\left[\begin{array}{cc}
4-\lambda & -5 \\
2 & -3-\lambda
\end{array}\right] \longrightarrow \\
\operatorname{det}(A-\lambda I) & =(4-\lambda)(-3-\lambda)+10 \\
& =\lambda^{2}-\lambda-2 \\
& =(\lambda+1)(\lambda-2)
\end{aligned}
$$

Thus, A has two eigenvalues, $\lambda_{1}=-1$ and $\lambda_{2}=2$. Each is associated with a right eigenvector \vec{x}. In this example,

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) \vec{x}_{1} & =\overrightarrow{0} \longrightarrow \\
{\left[\begin{array}{cc}
5 & -5 \\
2 & -2
\end{array}\right] \vec{x}_{1} } & =\overrightarrow{0} \longrightarrow \\
\vec{x}_{1} & =\{\sqrt{2} / 2, \quad \sqrt{2} / 2\}^{T} \\
\left(A-\lambda_{2} I\right) \vec{x}_{2} & =\overrightarrow{0} \longrightarrow \\
{\left[\begin{array}{cc}
2 & -5 \\
2 & -5
\end{array}\right] \vec{x}_{2} } & =\overrightarrow{0} \longrightarrow \\
\vec{x}_{2} & =\left\{\begin{array}{ll}
5 \sqrt{29} / 29, & 2 \sqrt{29} / 29\}^{T}
\end{array} .\right.
\end{aligned}
$$

Eigenvectors are defined only within an arbitrary constant, i.e., if \vec{x} is an eigenvector then $c \vec{x}$ is also an eigenvector for any $c \neq 0$. They are often normalized to have unity magnitude, and positive first element (as above). The condition that $\operatorname{rank}\left(A-\lambda_{i} I\right)=\operatorname{rank}(A)-1$ indicates that there is only one eigenvector for the eigenvalue λ_{i}; more precisely, a unique direction for the eigenvector, since the magnitude can be arbitrary. If the left-hand side rank is less than this, then there are multiple eigenvectors that go with λ_{i}.

The above discussion relates only the right eigenvectors, generated from the equation $A \vec{x}=$ $\lambda \vec{x}$. Left eigenvectors, defined as $\vec{y}^{T} A=\lambda \vec{y}^{T}$, are also useful for many problems, and can be defined simply as the right eigenvectors of $A^{T} . A$ and A^{T} share the same eigenvalues λ, since they share the same determinant. Example:

$$
\begin{aligned}
\left(A^{T}-\lambda_{1} I\right) \vec{y}_{1} & =\overrightarrow{0} \longrightarrow \\
{\left[\begin{array}{rr}
5 & 2 \\
-5 & -2
\end{array}\right] \vec{y}_{1} } & =\overrightarrow{0} \longrightarrow \\
\vec{y}_{1} & =\{2 \sqrt{29} / 29,-5 \sqrt{29} / 29\}^{T} \\
{\left[\begin{array}{rr}
2 & 2 \\
-5 & -5
\end{array}\right] \vec{y}_{2} } & =\overrightarrow{0} \longrightarrow \\
\vec{y}_{2} & =\{\sqrt{2} / 2,-\sqrt{2} / 2\}^{T} .
\end{aligned}
$$

13.2.9 Modal Decomposition

For simplicity, we consider matrices that have unique eigenvectors for each eigenvalue. The right and left eigenvectors corresponding to a particular eigenvalue λ can be defined to have unity dot product, that is $\vec{x}_{i}^{T} \vec{y}_{i}=1$, with the normalization noted above. The dot products of a left eigenvector with the right eigenvectors corresponding to different eigenvalues are zero. Thus, if the set of right and left eigenvectors, V and W, respectively, is

$$
\begin{aligned}
V & =\left[\vec{x}_{1} \cdots \vec{x}_{n}\right], \text { and } \\
W & =\left[\vec{y}_{1} \cdots \vec{y}_{n}\right],
\end{aligned}
$$

then we have

$$
\begin{aligned}
W^{T} V & =I, \text { or } \\
W^{T} & =V^{-1} .
\end{aligned}
$$

Next, construct a diagonal matrix containing the eigenvalues:

$$
\Lambda=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \cdot & \\
0 & & \lambda_{n}
\end{array}\right]
$$

it follows that

$$
\begin{aligned}
A V & =V \Lambda \longrightarrow \\
A & =V \Lambda W^{T} \\
& =\sum_{i=1}^{n} \lambda_{i} \vec{v}_{i} \vec{w}_{i}^{T} .
\end{aligned}
$$

Hence A can be written as a sum of modal components. ${ }^{3}$

[^0]MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{3}$ By carrying out successive multiplications, it can be shown that A^{k} has its eigenvalues at λ_{i}^{k}, and keeps the same eigenvectors as A.

