13.1 Vectors

13.1.1 Definition

We use the overhead arrow to denote a column vector, i.e., a *linear segment with a direction*. For example, in three-space, we write a vector in terms of its components with respect to a reference system as

$$\vec{a} = \left\{ \begin{array}{c} 2\\1\\7 \end{array} \right\}.$$

The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

1. Vector addition:

$$\vec{a} + \vec{b} = \vec{c}$$

$$\begin{cases} 2\\1\\7 \end{cases} + \begin{cases} 3\\3\\2 \end{cases} = \begin{cases} 5\\4\\9 \end{cases}.$$

Graphically, addition is stringing the vectors together head to tail.

2. Scalar multiplication:

$$-2 \times \left\{ \begin{array}{c} 2\\1\\7 \end{array} \right\} = \left\{ \begin{array}{c} -4\\-2\\-14 \end{array} \right\}.$$

13.1.2 Vector Magnitude

The total length of a vector of dimension m, its Euclidean norm, is given by

$$||\vec{x}|| = \sqrt{\sum_{i=1}^{m} x_i^2}.$$

This scalar is commonly used to normalize a vector to length one.

13.1.3 Vector Dot or Inner Product

The dot product of two vectors is a scalar equal to the sum of the products of the corresponding components:

$$\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y} = \sum_{i=1}^m x_i y_i.$$

The dot product also satisfies

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta,$$

where θ is the angle between the vectors.

13.1.4 Vector Cross Product

The cross product of two three-dimensional vectors \vec{x} and \vec{y} is another vector \vec{z} , $\vec{x} \times \vec{y} = \vec{z}$, whose

- 1. direction is normal to the plane formed by the other two vectors,
- 2. direction is given by the right-hand rule, rotating from \vec{x} to \vec{y} ,
- 3. magnitude is the area of the parallelogram formed by the two vectors the cross product of two parallel vectors is zero and
- 4. (signed) magnitude is equal to $||\vec{x}|| ||\vec{y}|| \sin \theta$, where θ is the angle between the two vectors, measured from \vec{x} to \vec{y} .

In terms of their components,

$$\vec{x} \times \vec{y} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \begin{cases} (x_2y_3 - x_3y_2)\hat{i} \\ (x_3y_1 - x_1y_3)\hat{j} \\ (x_1y_2 - x_2y_1)\hat{k} \end{cases}.$$

13.2 Matrices

13.2.1 Definition

A matrix, or array, is equivalent to a set of column vectors of the same dimension, arranged side by side, say

$$A = \begin{bmatrix} \vec{a} & \vec{b} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 3 \\ 7 & 2 \end{bmatrix}.$$

This matrix has three rows (m = 3) and two columns (n = 2); a vector is a special case of a matrix with one column. Matrices, like vectors, permit addition and scalar multiplication. We usually use an upper-case symbol to denote a matrix.

13.2.2 Multiplying a Vector by a Matrix

If A_{ij} denotes the element of matrix A in the *i*'th row and the *j*'th column, then the multiplication $\vec{c} = A\vec{v}$ is constructed as:

$$c_i = A_{i1}v_1 + A_{i2}v_2 + \dots + A_{in}v_n = \sum_{j=1}^n A_{ij}v_j,$$

where *n* is the number of columns in *A*. \vec{c} will have as many rows as *A* has rows (*m*). Note that this multiplication is defined only if \vec{v} has as many rows as *A* has columns; they have consistent *inner dimension n*. The product $\vec{v}A$ would be well-posed only if *A* had one row, and the proper number of columns. There is another important interpretation of this vector multiplication: Let the subscript : indicate all rows, so that each $A_{:j}$ is the *j*'th column vector. Then

$$\vec{c} = A\vec{v} = A_{:1}v_1 + A_{:2}v_2 + \dots + A_{:n}v_n.$$

We are multiplying column vectors of A by the scalar elements of \vec{v} .

13.2.3 Multiplying a Matrix by a Matrix

The multiplication C = AB is equivalent to a side-by-side arrangement of column vectors $C_{:j} = AB_{:j}$, so that

$$C = AB = \begin{bmatrix} AB_{:1} & AB_{:2} & \cdots & AB_{:k} \end{bmatrix},$$

where k is the number of columns in matrix B. The same inner dimension condition applies as noted above: the number of columns in A must equal the number of rows in B. Matrix multiplication is:

- 1. Associative. (AB)C = A(BC).
- 2. Distributive. A(B+C) = AB + AC, (B+C)A = BA + CA.
- 3. NOT Commutative. $AB \neq BA$, except in special cases.

13.2.4 Common Matrices

Identity. The identity matrix is usually denoted I, and comprises a square matrix with ones on the diagonal, and zeros elsewhere, e.g.,

$$I_{3\times3} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

The identity always satisfies $AI_{n \times n} = I_{m \times m}A = A$.

Diagonal Matrices. A diagonal matrix is square, and has all zeros off the diagonal. For instance, the following is a diagonal matrix:

$$A = \left[\begin{array}{rrr} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case the operation is commutative.

13.2.5 Transpose

The transpose of a vector or matrix, indicated by a T superscript results from simply swapping the row-column indices of each entry; it is equivalent to "flipping" the vector or matrix around the diagonal line. For example,

$$\vec{a} = \begin{cases} 1\\ 2\\ 3 \end{cases} \longrightarrow \vec{a}^T = \{1 \ 2 \ 3\}$$
$$A = \begin{bmatrix} 1 & 2\\ 4 & 5\\ 8 & 9 \end{bmatrix} \longrightarrow A^T = \begin{bmatrix} 1 & 4 & 8\\ 2 & 5 & 9 \end{bmatrix}$$

A very useful property of the transpose is

$$(AB)^T = B^T A^T.$$

13.2.6 Determinant

The determinant of a square matrix A is a scalar equal to the volume of the parallelepiped enclosed by the constituent vectors. The two-dimensional case is particularly easy to remember, and illustrates the principle of volume:

$$det(A) = A_{11}A_{22} - A_{21}A_{12}$$

In higher dimensions, the determinant is more complicated to compute. The general formula allows one to pick a row k, perhaps the one containing the most zeros, and apply

$$det(A) = \sum_{j=1}^{j=n} A_{kj} (-1)^{k+j} \Delta_{kj},$$

where Δ_{kj} is the determinant of the sub-matrix formed by neglecting the k'th row and the *j*'th column. The formula is symmetric, in the sense that one could also target the k'th column:

$$det(A) = \sum_{j=1}^{j=n} A_{jk} (-1)^{k+j} \Delta_{jk}.$$

If the determinant of a matrix is zero, then the matrix is said to be singular – there is no volume, and this results from the fact that the constituent vectors do not span the matrix dimension. For instance, in two dimensions, a singular matrix has the vectors colinear; in three dimensions, a singular matrix has all its vectors lying in a (two-dimensional) plane. Note also that $det(A) = det(A^T)$. If $det(A) \neq 0$, then the matrix is said to be nonsingular.

13.2.7 Inverse

The inverse of a square matrix A, denoted A^{-1} , satisfies $AA^{-1} = A^{-1}A = I$. Its computation requires the determinant above, and the following definition of the $n \times n$ adjoint matrix:

$$adj(A) = \begin{bmatrix} (-1)^{1+1}\Delta_{11} & \cdots & (-1)^{1+n}\Delta_{1n} \\ \cdots & \cdots & \cdots \\ (-1)^{n+1}\Delta_{n1} & \cdots & (-1)^{n+n}\Delta_{nn}. \end{bmatrix}^T.$$

Once this computation is made, the inverse follows from

$$A^{-1} = \frac{adj(A)}{det(A)}.$$

If A is singular, i.e., det(A) = 0, then the inverse does not exist. The inverse finds common application in solving systems of linear equations such as

$$A\vec{x} = \vec{b} \longrightarrow \vec{x} = A^{-1}\vec{b}.$$

13.2.8 Eigenvalues and Eigenvectors

A typical eigenvalue problem is stated as

$$A\vec{x} = \lambda \vec{x},$$

where A is an $n \times n$ matrix, \vec{x} is a column vector with n elements, and λ is a scalar. We ask for what nonzero vectors \vec{x} (right eigenvectors), and scalars λ (eigenvalues) will the equation be satisfied. Since the above is equivalent to $(A - \lambda I)\vec{x} = \vec{0}$, it is clear that $det(A - \lambda I) = 0$. This observation leads to the solutions for λ ; here is an example for the two-dimensional case:

$$A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \longrightarrow$$
$$A - \lambda I = \begin{bmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{bmatrix} \longrightarrow$$
$$det(A - \lambda I) = (4 - \lambda)(-3 - \lambda) + 10$$
$$= \lambda^2 - \lambda - 2$$
$$= (\lambda + 1)(\lambda - 2).$$

Thus, A has two eigenvalues, $\lambda_1 = -1$ and $\lambda_2 = 2$. Each is associated with a right eigenvector \vec{x} . In this example,

$$(A - \lambda_1 I)\vec{x}_1 = \vec{0} \longrightarrow$$

$$\begin{bmatrix} 5 & -5\\ 2 & -2 \end{bmatrix} \vec{x}_1 = \vec{0} \longrightarrow$$

$$\vec{x}_1 = \left\{ \sqrt{2}/2, \ \sqrt{2}/2 \right\}^T$$

$$(A - \lambda_2 I)\vec{x}_2 = \vec{0} \longrightarrow$$

$$\begin{bmatrix} 2 & -5\\ 2 & -5 \end{bmatrix} \vec{x}_2 = \vec{0} \longrightarrow$$

$$\vec{x}_2 = \left\{ 5\sqrt{29}/29, \ 2\sqrt{29}/29 \right\}^T$$

Eigenvectors are defined only within an arbitrary constant, i.e., if \vec{x} is an eigenvector then $c\vec{x}$ is also an eigenvector for any $c \neq 0$. They are often normalized to have unity magnitude, and positive first element (as above). The condition that $rank(A - \lambda_i I) = rank(A) - 1$ indicates that there is only one eigenvector for the eigenvalue λ_i ; more precisely, a unique direction for the eigenvector, since the magnitude can be arbitrary. If the left-hand side rank is less than this, then there are multiple eigenvectors that go with λ_i .

The above discussion relates only the right eigenvectors, generated from the equation $A\vec{x} = \lambda \vec{x}$. Left eigenvectors, defined as $\vec{y}^T A = \lambda \vec{y}^T$, are also useful for many problems, and can be defined simply as the right eigenvectors of A^T . A and A^T share the same eigenvalues λ , since they share the same determinant. Example:

$$(A^{T} - \lambda_{1}I)\vec{y}_{1} = \vec{0} \longrightarrow$$

$$\begin{bmatrix} 5 & 2 \\ -5 & -2 \end{bmatrix} \vec{y}_{1} = \vec{0} \longrightarrow$$

$$\vec{y}_{1} = \left\{ 2\sqrt{29}/29, -5\sqrt{29}/29 \right\}^{T}$$

$$(A^{T} - \lambda_{2}I)\vec{y}_{2} = \vec{0} \longrightarrow$$

$$\begin{bmatrix} 2 & 2 \\ -5 & -5 \end{bmatrix} \vec{y}_{2} = \vec{0} \longrightarrow$$

$$\vec{y}_{2} = \left\{ \sqrt{2}/2, -\sqrt{2}/2 \right\}^{T}.$$

13.2.9 Modal Decomposition

For simplicity, we consider matrices that have unique eigenvectors for each eigenvalue. The right and left eigenvectors corresponding to a particular eigenvalue λ can be defined to have unity dot product, that is $\vec{x}_i^T \vec{y}_i = 1$, with the normalization noted above. The dot products of a left eigenvector with the right eigenvectors corresponding to different eigenvalues are zero. Thus, if the set of right and left eigenvectors, V and W, respectively, is

$$V = [\vec{x}_1 \cdots \vec{x}_n], \text{ and}$$
$$W = [\vec{y}_1 \cdots \vec{y}_n],$$

then we have

$$W^T V = I, \text{ or} W^T = V^{-1}.$$

Next, construct a diagonal matrix containing the eigenvalues:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ & \cdot \\ 0 & \lambda_n \end{bmatrix};$$

it follows that

$$AV = V\Lambda \longrightarrow$$

$$A = V\Lambda W^{T}$$

$$= \sum_{i=1}^{n} \lambda_{i} \vec{v}_{i} \vec{w}_{i}^{T}.$$

Hence A can be written as a sum of modal components.³

³By carrying out successive multiplications, it can be shown that A^k has its eigenvalues at λ_i^k , and keeps the same eigenvectors as A.

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.