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9 KINEMATICS OF MOVING FRAMES 

An understanding of inertial guidance systems for navigation of vehicles and robots requires 
some background in kinematics. Central in our discussion is the use of multiple reference 
frames. Such frames surround us in our daily lives: 

• Earth latitude and longitude 

• Forward, backward motion relative to current position 

• Right, left motion 

• Axes printed on an inertial measurement unit 

• Vehicle-referenced coordinates, e.g., relative to the centroid 

We first describe how to transform vectors through changes in reference frame. Considering 
differential rotations over differential time elements gives rise to the concept of the rotation 
vector, which is used in deriving inertial dynamics in a moving body frame. 

9.1 Rotation of Reference Frames 

A vector has a dual definition: It is a segment of a a line with direction, or it consists of its 
projection on a reference system 0xyz, usually orthogonal and right handed. The first form 
is independent of any reference system, whereas the second (in terms of its components) 
depends directly on the coordinate system. Here we use the second notation, i.e., x is meant 
as a column vector, whose components are found as projections of an (invariant) directed 
segment on a specific reference system. 

We denote through a subscript the specific reference system of a vector. Let a vector ex
pressed in the inertial (Earth) frame be denoted as �x, and in a body-reference frame �xb. For 
the moment, we assume that the origins of these frames are coincident, but that the body 
frame has a different angular orientation. The angular orientation has several well-known 
descriptions, including the Euler angles and the Euler parameters (quaternions). The former 
method involves successive rotations about the principal axes, and has a solid link with the 
intuitive notions of roll, pitch, and yaw. One of the problems with Euler angles, however, 
is that for certain specific values the transformation exhibits discontinuities (as will be seen 
below). Quaternions present a more elegant and robust method, but with more abstraction. 
We will develop the equations of motion here using Euler angles. 

Tape three pencils together to form a right-handed three-dimensional coordinate system. 
Successively rotating the system about three of its own principal axes, it is easy to see that 
any possible orientation can be achieved. For example, consider the sequence of [yaw, pitch, 
roll]. Starting from an orientation identical to some inertial frame, e.g., the walls of the 
room you are in, rotate the movable system about its yaw axis, then about the new pitch 
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axis, then about the newer still roll axis. Needless to say, there are many valid Euler angle 
rotation sets possible to reach a given orientation; some of them might use the same axis 
twice. 

0 
b 

Figure 1: Successive application of three Euler angles transforms the original coordinate 
frame into an arbitrary orientation. 

A first question is: what is the coordinate of a point fixed in inertial space, referenced to 
a rotated body frame? The transformation takes the form of a 3×3 matrix, which we now 
derive through successive rotations of the three Euler angles. Before the first rotation, the 
body-referenced coordinate matches that of the inertial frame: �x
 =
 �x. Now rotate the
 
movable frame yaw axis (z) through an angle φ. We have
 

0 
b 

⎤
⎥1 

b = ⎦ �x 

Rotation about the z-axis does not change the z-coordinate of the point; the other axes are 
modified according to basic trigonometry. Now apply the second rotation, pitch about the 
new y-axis by the angle θ: 

⎡ 

⎢⎣ 

cos φ sin φ 0
 
�x
 − sin φ cos φ 0 

0 

0 
b = R(φ)�x
 .
 

0 1
 

�x


⎡ 

⎢⎣ 

cos θ 0 − sin θ 
0 1 0 1 

b = R(θ)�x
 .
 
sin θ 0 cos θ
 

1 
b

⎤
⎥2 

b = ⎦ �x 

Finally, rotate the body system an angle ψ about its newest x-axis: 



� 
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=
 

⎡ 

⎢⎣ 

1 0 0
 
0 cos ψ sin ψ
 
0 − sin ψ cos ψ
 

⎦ �xb 

⎤
⎥3 2 2�x
 = R(ψ)�x
b .b 

⎤
⎥

This represents the location of the original point, in the fully-transformed body-reference 
frame, i.e., �xb 

3 . We will use the notation �xb instead of �xb 
3 from here on. The three independent 

rotations can be cascaded through matrix multiplication (order matters!): 

�xb = R(ψ)R(θ)R(φ)�x 

⎦ �x 

⎡ 

⎢⎣ 

cθcφ cθsφ −sθ 
−cψsφ + sψsθcφ cψcφ + sψsθsφ sψcθ 

sψsφ + cψsθcφ 
=
 

−sψcφ + cψsθsφ cψcθ
 
= R(φ, θ, ψ)�x.
 

All of the transformation matrices, including R(φ, θ, ψ), are orthonormal: their inverse is 
equivalent to their transpose, so that �x = RT �xb. Additionally, we should note that the 
rotation matrix R is universal to all representations of orientation, including quaternions. 
The roles of the trigonometric functions, as written, are specific to Euler angles, and to the 
order in which we performed the rotations. 

In the case that the movable (body) reference frame has a different origin than the inertial 
frame, we have 

�x = �x0 + RT �xb, 

where �x0 is the location of the moving origin, expressed in inertial coordinates. 

9.2 Differential Rotations 

Now consider small rotations from one frame to another; using the small angle assumption 
to ignore higher-order terms gives 

⎡ 

⎢⎣ 

⎤
⎥⎦ 

⎤
⎥⎦ + I3×3, 

1 δφ −δθ 
−δφ 1 δψ 

δθ 
R 

−δψ 1
 ⎡ 

⎢⎣ 

0 δφ −δθ 
−δφ 0 δψ 

δθ 
=
 

−δψ 0
 

where I3×3 donotes the identity matrix. R comprises the identity plus a part equal to the 
(negative) cross-product operator (−δE� ×), where δE� = [δψ, δθ, δφ], the vector of differential 
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Euler angles, ordered with the axes [x, y, z]. Small rotations are completely decoupled; their 
order does not matter. Since R−1 = RT , we have also R−1 = I3×3 + δE� ×; 

�xb = �x − δE� × �x 

�x = �xb + δE� × �xb. 

We now fix the point of interest on the body, instead of in inertial space, calling its location 
in the body frame �r (radius). The differential rotations occur over a time step δt, so that 
we can write the location of the point before and after the rotation, with respect to the first 
frame as follows: 

�x(t) = �r 

�x(t + δt) = RT �r = �r + δE� × �r. 

Dividing by the differential time step gives 

δ�x δE� 
= r 

δt δt 
× � 

= �ω × �r, 

where the rotation rate vector � E/dt because the Euler angles for this infinitesimal ω � d � 

rotation are small and decoupled. This same cross-product relationship can be derived in 
the second frame as well: 

�xb(t) = R�r = �r − δE� × �r 

�xb(t + δt) = �r. 

such that 

δ�xb δE� 
= r 

δt δt 
× � 

= �ω × �r, 

On a rotating body whose origin point is fixed, the time rate of change of a constant radius 
vector is the cross-product of the rotation rate vector �ω and the radius vector itself. The 
resultant derivative is in the moving body frame. 

In the case that the radius vector changes with respect to the body frame, we need an 
additional term: 

d�xb ∂�r 
= �ω × �r + . 

dt ∂t 

Finally, allowing the origin to move as well gives 

d�xb ∂�r d�xo 
= �ω × �r + + . 

dt ∂t dt 



� = 
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This result is often written in terms of body-referenced velocity �v: 

∂�r 
�v = �ω × �r + + �vo,

∂t 

where �vo is the body-referenced velocity of the origin. The total velocity of the particle is 
equal to the velocity of the reference frame origin, plus a component due to rotation of this 
frame. The velocity equation can be generalized to any body-referenced vector f�: 

df� ∂f� 
�= + �ω × f. 

dt ∂t 

9.3 Rate of Change of Euler Angles 

Only for the case of infinitesimal Euler angles is it true that the time rate of change of 
the Euler angles equals the body-referenced rotation rate. For example, with the sequence 
[yaw,pitch,roll], the Euler yaw angle (applied first) is definitely not about the final body yaw 
axis; the pitch and roll rotations moved the axis. An important part of any simulation is 
the evolution of the Euler angles. Since the physics determine rotation rate �ω, we seek a 
mapping �ω d �E/dt. → 

The idea is to consider small changes in each Euler angle, and determine the effects on the 
rotation vector. The first Euler angle undergoes two additional rotations, the second angle 
one rotation, and the final Euler angle no additional rotations: 

ω 

⎧
⎪

⎩
⎨
⎪ 

R(ψ)R(θ)
 

⎧
⎪

⎩
⎨
⎪⎭

+ R(ψ)
 

⎫
⎪⎬
⎪ 

⎧
⎪⎨
⎪ 

⎫
⎪⎬
⎪ 

+
 

⎫
⎪⎬
⎪ 

0
 0
 dψ/dt
 
0
 dθ/dt
 0
 

⎩⎭ 0
 ⎭dφ/dt
 0
 ⎧
⎪⎨
⎪ 

⎫
⎪⎬
⎪ 

⎡ 

⎢⎣ 

⎤ 

⎥⎦ 

1 0 − sin θ 
sin ψ cos θ 

dψ/dt
 
0 cos ψ
 dθ/dt
=
 .
 

⎩ ⎭0 − sin ψ cos ψ cos θ
 dφ/dt
 

Taking the inverse gives
 

dE�
 
= 

dt 

⎡ 

⎢⎣ 

⎤
⎥⎦ �ω 

1 sin ψ tan θ cos ψ tan θ 
0 
0 

cos ψ 
sin ψ/ cos θ 

− sin ψ 
cos ψ/ cos θ 

= Γ(E �� )ω.

Singularities exist in Γ at θ = {π/2, 3π/2}, because of the division by cos θ, and hence this 
otherwise useful equation for propagating the angular orientation of a body fails when the 
vehicle rotates about the intermediate y-axis by ninety degrees. In applications where this 
is a real possibility, for example in orbiting satellites and robotic arms, quaternions provide 
a seamless mapping. For many vehicles, the singularity in pitch is acceptable, because a 
ninety-degree pitch angle is outside the normal operating condition. 
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9.4 A Practical Example: Dead Reckoning 

The measurement of heading and longitudinal speed gives rise to one of the oldest methods 
of navigation: dead reckoning. Quite simply, if the estimated longitudinal speed over ground 
is U , and the estimated heading is φ, ignoring the lateral velocity leads to the evolution of 
Cartesian coordinates: 

ẋ = U cos φ 

ẏ = U sin φ. 

Needless to say, currents and vehicle sideslip will cause this to be in error. Nonetheless, some 
of the most remarkable feats of navigation in history have depended on dead reckoning of 
this type. 

Suppose that the heading is estimated from an angular rate gyro. We use 

φ̇ = r 

ẋ = U cos φ 

ẏ = U sin φ, 

where r is the measured angular rate. As you might expect, long-term errors in this rule 
will be worse than for the previous, because integration of the rate gyro signal is subject to 
drift. 

Suppose that we have in addition to a sensor for U and r, a sensor for the cross-body velocity 
V . Our dead-reckoning problem is 

φ̇ = r 

ẋ = U cos φ − V sin φ 

ẏ = U sin φ + V cos φ, 
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