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4 RANDOM PROCESSES 

From the essential aspects of probability we now move into the time domain, considering 
random signals. For this, assign to each random event Ai a complete signal, instead of a 
single scalar: Ai −→ xi(t). The set of all the functions that are available (or the menu) 
is call the ensemble of the random process. An example case is to roll a die, generating 
i = [1, 2, 3, 4, 5, 6] and suppose xi(t) = ti . 

In the general case, there could be infinitely many members in the ensemble, and of course 
these functions could involve some other variables, for example xi(t, y, z), where y and z 
are variables not related to the random event Ai. Any particular xi(t) can be considered 
a regular, deterministic function, if the event is known. x(to), taken at a specific time but 
without specification of which event has occurred, is a random variable. 

4.1 Time Averages 

The theory of random processes is built on two kinds of probability calculations: those taken 
across time and those taken across the ensemble. For time averages to be taken, we have to 
consider a specific function, indexed by i: 

1 � T 
m(xi(t)) = lim xi(t)dt (mean)

T →∞ T 0 

V t(xi(t)) = lim
1 � T 

[xi(t) − m(xi(t))]
2dt (variance on time) 

T →∞ T 
1 � 0 

T 
Rt(τ ) = lim [xi(t) − m(xi(t))][xi(t + τ) − m(xi(t))]dt (autocorrelation).i

T →∞ T 0 

The mean and variance have new symbols, but are calculated in a way that is consistent with 
our prior definitions. The autocorrelation is new and plays a central role in the definition of 
a spectrum. Notice that is an inner product of the function’s deviation from its mean, with 
a delayed version of the same, such that R(0) = V t . 

Consider the roll of a die, and the generation of functions xi(t) = a cos(iωot). We have 
� T 

m(xi(t)) = lim a cos(iωot)dt = 0 
0T →∞


V t(xi(t)) = lim
1 � T 

a 2 cos 2(iωot)dt = 
a2


T →∞ T 0 2 
1 � T a2 

Ri
t(τ) = lim a 2 cos(iωot) cos(iωo(t + τ ))dt = cos(iωoτ). 

T →∞ T 0 2 

In this case, the autocorrelation depends explicitly on the event index i, and has a peak of 
a2/2 at iωoτ = 2πk, where k is an integer. These values for τ are precisely separated by the 
period of the i’th harmonic in the ensemble. When the functions line up, we get a positive 
Rt; when they are out of phase, we get a negative Rt . 
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4.2 Ensemble Averages 

The other set of statistics we can compute are across the ensemble, but at a particular time. 
Set yi = xi(to) where to is a specific time. Then, considering again the six harmonics from 
above, we have 

6

E(y) = 
� 

piyi = 
� 1 

a cos(iωoto)
6i=1 

6
2 2E(y 2) = 

� 
piyi = 

� 1 
a cos 2(iωoto). 

6i=1 

We can see from this simple example that in general, time averages (which are independent 
of time, but dependent on event) and ensemble statistics (which are independent of event, 
but dependent on time) are not the same. Certainly one could compute ensemble statistics 
on time averages, and vice versa, but we will not consider such a procedure specifically here. 

The ensemble autocorrelation function is now a function of the time and of the delay: 

R(t, τ) = E(x(t)x(t + τ)) or


R(t, τ) =
 E [{x(t) − E(x(t))} {x(t + τ) − E(x(t + τ))}] . 

The second form here explicitly takes the mean values into account, and can be used when 
the process has nonzero mean. The two versions are not necessarily equal as written. 

4.3 Stationarity 

A stationary random process is one whose ensemble statistics do not depend on time. Intu
itively, this means that if we were to sample a sequence of processes, at the same time within 
each process, and compute statistics of this data set, we would find no dependence of the 
statistics on the time of the samples. Aircraft engine noise is a stationary process in level 
flight, whereas the sound of live human voices is not. For a stationary process, m(t) = m, 
i.e., the ensemble mean has no dependence on time. The same is true for the other statistics: 
V (t) = R(t, 0) = V , and R(t, τ ) = R(τ). Formally, a stationary process has all ensemble 
statistics independent of time, whereas our case that the mean, variance, and autocorrelation 
functions are independent of time defines a (weaker) second-order stationary process. 

Here is an example: yi(t) = a cos(ωot + θi), where θi is a random variable, distributed 
uniformly in the range [0, 2π]. Is this process stationary? We have to show that all three of 
the ensemble statistics are independent of time: 

E(y(t)) = 
1 
2π 

� 2π 

o 
a cos(ωot + θ)dθ = 0 

R(t, τ) = E(y(t)y(t + τ)) 
1 � 2π 

= a 2 cos(ωot + θ) cos(ωo(t + τ) + θ)dθ 
2π 0 
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1 
= a 2 cos(ωoτ)

2

V (t) = R(t, 0).


Thus the process is second-order stationary. 

As noted above, the statistics of a stationary process are not necessarily the same as the time 
averages. A very simple example of this is a coin toss, in which heads triggers x1(t) = 1 and 
x2(t) = 2. Clearly the mean on time of x1(t) is one, but the ensemble mean at any time is 
E(x(to)) = 1.5. This difference occurs here even though the process is obviously stationary. 

When the ensemble statistics and the time averages are the same, we say that the process is 
ergodic. Continuing our example above, let us calculate now the time averages: 

1 � T 
m(yi(t)) = lim a cos(ωot + θi)dt


T →∞ T 0

1 1 

= lim a sin(ωo
T 

T →∞ T ωo 
t + θi)|0 

= 0;

1 � T


Rt(τ) = lim a 2 cos(ωot + θi) cos(ωo(t + τ) + θi)dt 
T →∞ T 0 
1 

= a 2 cos(ωoτ );
2 

2a
V t = Rt(0) = . 

2 

So a sinusoid at random phase is an ergodic process. Indeed, this form is a foundation 
for modeling natural random processes such as ocean waves, atmospheric conditions, and 
various types of noise. In particular, it can be verified that the construction 

N

y(t) = 
� 

an cos(ωnt + θn), 
n=1 

where the θn are independently and uniformly distributed in [0, 2π], is stationary and ergodic. 
It has mean zero, and autocorrelation 

nR(τ) = 
� a2 

cos(ωnτ). 
2 n=1 

We now make two side notes. Under stationary and ergodic conditions, the autocorrelation 
function is symmetric on positive and negative τ because we can always write 

R(τ) = E(x(t)x(t + τ)) = E(x(t� − τ)x(t�)), where t� = t + τ. 

Furthermore, we have the inequality that R(0) ≥ |R(τ)| for any τ . To see this, 

0 ≤ E[(x(t) + x(t + τ ))2] = E[x(t)2] + 2E[x(t)x(t + τ)] + E[x(t + τ )2] 
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= 2R(0) + 2R(τ); similarly, 

0 ≤ E[(x(t) − x(t + τ ))2] = E[x(t)2] − 2E[x(t)x(t + τ )] + E[x(t + τ)2] 

= 2R(0) − 2R(τ). 

The only way both of these can be true is if R(0) ≥ |R(τ)|. 

4.4 The Spectrum: Definition 

Given an ergodic process y(t), with mean zero and autocorrelation R(τ), the power spectral 
density of y(t), or the spectrum, is the Fourier transform of the autocorrelation: 

� ∞ 
R(τ)e−iωτ dτS(ω) = 

R(τ) = 
1
−∞� ∞ 

S(ω)e iωτ dω. 
2π −∞ 

The spectrum is a real and even function of frequency ω, because the autocorrelation is real 
and even. Expanding the above definition, 

� ∞
S(ω) = R(τ)(cos ωτ − i sin ωτ)dτ, 

−∞ 

and clearly only the cosine will create an inner product with R(τ). 

4.5 Wiener-Khinchine Relation 

Recall from our discussion of the Fourier transform that convolution in the time domain of 
the impulse response h(t) and an arbitrary system input u(t), is equivalent to multiplication 
in the frequency domain of the Fourier transforms. This is a property in particular of linear, 
time-invariant systems. Now we can make some additional strong statements in the case of 
random processes. 

If u(t) is stationary and ergodic, and the system is LTI, then the output y(t) is also stationary 
and ergodic. The statistics are related using the spectrum: 

Sy(ω) = H(ω) 2Su(ω).| | 

This can be seen as a variant on the transfer function from the Fourier transform. Here, 
the quantity H(ω) 2 transforms the spectrum of the input to the spectrum of the output. | |
It can be used to map the statistical properties of the input (such as an ocean wave field) 
to statistical properties of the output. In ocean engineering, this is termed the response 
amplitude operator, or RAO. 



|H( )|2 Su( ) Sy( )

4 RANDOM PROCESSES 

To prove this, we will use the convolution property of LTI systems. 

27 

� ∞
y(t) = h(τ)u(t − τ)dτ, so that 

−∞
Ry(t, τ ) = E[y(t)y(t + τ)], �� ∞ � ∞ � 

= E h(τ1)u(t − τ1)h(τ2)u(t + τ − τ2)dτ1dτ2 
−∞ −∞� ∞ � ∞

= dτ1dτ2h(τ1)h(τ2)E[u(t − τ1)u(t + τ − τ2)] 
−∞ −∞� ∞ � ∞

= dτ1dτ2h(τ1)h(τ2)Ru(τ − τ2 + τ1) 
−∞ −∞
(because the input is stationary and ergodic, Ru does not depend on time) � ∞ 

(τ)e−iωτ dτSy(ω) = Ry
−∞ 

= 
� ∞ � ∞ � ∞ 

dτdτ1dτ2e
−iωτ h(τ1)h(τ2)Ru(τ − τ2 + τ1); now let ξ = τ − τ2 + τ1 

−∞ −∞ −∞ 

= 
� ∞ � ∞ � ∞ 

dξdτ1dτ2e
−iω(ξ+τ2−τ1)h(τ1)h(τ2)Ru(ξ) 

−∞ −∞ −∞ 

= 
� ∞ 

dξe−iωξRu(ξ) 
� ∞ 

e iωτ1 h(τ1) 
� ∞ 

dτ2e
−iωτ2 h(τ2) 

−∞ −∞ −∞ 

= Su(ω)H∗(ω)H(ω). 

Here we used the ∗-superscript to denote the complex conjugate, and finally we note that 
H∗H = H 2 .| |

4.6 Spectrum Interpretation 

Let us consider now the stationary and ergodic random process with description: 

N

y(t) = 
� 

an cos(ωnt + ψn), 
n=1 

where ψn is a random variable with uniform distribution in the range [0, 2π]. As mentioned 
previously, this process has autocorrelation 

1 N
2R(τ) = 

� 
an cos ωnτ ;

2 n=1 
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and then 

28 

1 N
2S(ω) = 

� 
anπ[δ(ω − ωn) + δ(ω + ωn)]. 

2 n=1 

As with the Fourier transform, each harmonic in the time domain maps to a pair of delta 
functions in the frequency domain. However, unlike the Fourier transform, there is no phase 
angle associated with the spectrum - the two delta functions are both positive and both real. 

Further, a real process has infinitely many frequency components, so that the spectrum 
really become a continuous curve. For example the Bretschneider wave spectrum in ocean 
engineering is given by 

ω4 
mS+(ω) = 

5 m H1
2 
/3e

−5ω4 /4ω4 

16 ω5 

where ω is frequency in radians per second, ωm is the modal (most likely) frequency of any 
given wave, and H1/3 is the significant wave height. The + superscript on S(ω) indicates a 
”one-sided spectrum,” wherein all the energy at positive and negative frequencies has been 
collected into the positive frequencies. We also take into account a factor of 1/2π (for reasons 
given below), to make the formal definition 

S+(ω) = 1 S(ω), for ω ≥ 0, and
π 

0, for ω < 0. 

What is the justification for the factor of 1/2π? Consider that 

1 � ∞ 
iωτ dω −→ R(τ) = S(ω)e 

2π −∞
1 � ∞

R(0) = S(ω)dω 
2π −∞
2 � ∞

= S(ω)dω, 
2π 0 

and therefore that 

σ2 = R(0) = 
� ∞ 

S+(ω)dω. 
0 

In words, the area under the one-sided spectrum is exactly equal to the variance, or the 
square of the standard deviation of the process. 
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