MIT OpenCourseWare http://ocw.mit.edu

2.00AJ / 16.00AJ Exploring Sea, Space, & Earth: Fundamentals of Engineering Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Purpose: To construct an ROV that can measure the Temperature, Salinity, Pressure, and Light in a body of water.

The Design Process

Design Constraints:

- Submerge at least 20 ft. under water
- Max Dimensions: 50 cm x 50 cm x 50 cm
- Must contain: 2 Light Banks
 - One Video Camera
 - One full sensor package
- Maximum of Three Motors

Goals:

- -Tapered/Pointy Front
- Curved Edges
- Wings
- Structurally Stable
- Big Surface Area Parallel to Ocean Floor
- Flames
- Laser Beams

Preliminary Designs

The Winged Avenger

Team: Los Aguamaestros

2.00A Final Project 2009

Failures/Improvements

- Buoyancy
- Propellers
- Sensor Package

- Motors

- Camera Placement

Predicted Strengths

- Hydrodynamic Wings
- Structurally Stable (Compact)
- Stable in Water (Big Surface Area)

- Motor Placement/Ability to Turn Easily

Predicted Weaknesses

- Weight of ROV
- Waterproofing

Final Design

- Hydrodynamic Wings
- Structurally Stable and Stable in Water
- Neutrally Buoyant

Motor/Propeller Testing Table

Propeller	Motor (GPH)	Force (g)	Voltage (V)	Current (A)
3 Blade	500	120	9.5	4.5
3 Blade	500	140-200	12	4.5
2 Blade (Black)	500	14	10	4.5
2 Blade (Black)	750	100	2	2
2 Blade (Black)	750	150	3.6	3
2 Blade (Black)	750	200	4.6	4
2 Blade (Black)	750	230	4.5	5.5
2 Blade (Gray)	500	60	4.4	2
2 Blade (Gray)	500	80	5.4	2.5
2 Blade (Gray)	500	150	7.5	3.5
2 Blade (Gray)	500	200	9.7	4.5
2 Blade (Gray)	500	40	3.2	1.5
2 Blade (Gray)	500	120	8.5	8.5
2 Blade (Gray)	500	200	7.5	3.5
2 Blade (Gray)	500	270	10	4.5
2 Blade (Gray)	500	270	10	4.5
2 Blade (Gray)	750	250	4.5	5

Rodrigo checking to see if our data makes sense

Final Results Graph & Analysis

Performance Analysis

- Unbalanced Horizontal Motors
- Problematic vertical motor
- Neutrally Buoyant
- Very quick, agile, & maneuverable
- Got all the data we needed!

Reflections & Conclusions

- Overall Success
- Wish we Knew Buoyancy Before Pool Run
- Disappointed with Motor/Propeller Performance
- Time Wasted Waiting for Parts
- Wings Worked Out Great for Stability
- Sensor Package Difficult to Waterproof
- Not Enough Time to Waterproof Frame