Problem Set 4

Problem Set 4

We would like to distribute our favorite solution for each problem to the class as the official solution so please strive for clarity and elegance.

Problem 4-1. Welding Speed

(a) Plot welding speed as a function of weld pool depth for depths $s=1 \mathrm{~mm}$ to 25 mm at two preheat temperatures, $T_{p}=70 \mathrm{~F}$ and $T_{p}=700 \mathrm{~F}$. Plot the two curves on the same graph [consider using a spreadsheet to do this]. Show any formulas that you derive.
(b) Explain what the point of this exercise is, ie., how does this shape how you design a part and the process that you use to make the part when welding is involved.

Problem 4-2. Cutting model

(a) Estimate the rate of production for the part in Figure 1 using the parameters from the following table. You may assume the part enters the cutting process as a rod that is 2.3 inches long at a radius of 1 inch. Plot the amount of power (in hp) required during the cutting of turning of this part.

w	Width of Cut	0.100 in
f	Feed Rate	$0.020 \mathrm{in} / \mathrm{rev}$
α	Rake angle	10 deg
ω	Spindle speed	$400 \mathrm{rev} / \mathrm{min}$
μ_{f}	Friction specific Energy	$0.10 \mathrm{hp} / \mathrm{min} / \mathrm{in}^{3}$
μ_{s}	Shear specific Energy	$0.40 \mathrm{hp} / \mathrm{min} / \mathrm{in}^{3}$
C	Taylor tool constant	350
n	Taylor tool exponent	0.45
t_{c}	Cost per tool	$\$ 20$

(b) What is the tooling cost per part as a function of ω ? [Note, the velocity changes during the two passes]. Use a spreadsheet to plot the tool cost vs V_{c} for values from $350 \mathrm{rev} / \mathrm{min}$ to $450 \mathrm{rev} / \mathrm{min}$.

Figure 1: Milled Flange

