Today's goals

- State space so far
- Definition of state variables
- Writing the state equations
- Solution of the state equations in the Laplace domain
- Phase space and phase diagrams
- Today
- Stability in state space
- State feedback control

State space overview

From the Equation of Motion to the State-Space representation:

$$
\begin{aligned}
& m \ddot{x}(t)+b \dot{x}(t)+k x(t)=w(t) \rightarrow\binom{x}{\dot{x}} \equiv \mathbf{q}(t)=\binom{q_{1}}{q_{2}} \text { state, } y(t) \equiv \dot{x}(t) \text { output } \\
& \Rightarrow \dot{\mathbf{q}}(t)=\binom{\dot{q}_{1}}{\dot{q}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-k / m & -b / m
\end{array}\right)\binom{q_{1}}{q_{2}}+\binom{0}{1} w(t) ; \quad y(t)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{q_{1}}{q_{2}} \equiv \mathbf{c q} .
\end{aligned}
$$

Solution to the state equations:

$$
\begin{array}{cc}
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-k / m & -b / m
\end{array}\right) \\
s \hat{\mathbf{q}}(s)=\mathbf{A} \hat{\mathbf{q}}(s)+\mathbf{b} W(s) \Rightarrow \\
\mathbf{b}=\binom{0}{1} & \hat{\mathbf{q}}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s) \\
Y(s)=\mathbf{c} \hat{\mathbf{q}}(s)=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s) .
\end{array}
$$

State space solution to the uncompensated 2.004 Tower model

$$
\hat{\mathbf{q}}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s)=\frac{1}{s^{2}+\left(b_{1} / m_{1}\right) s+\left(k_{1} / m_{1}\right)}\binom{1 / m_{1}}{s / m_{1}} W(s)
$$

From this result we can obtain transfer functions for position, velocity:

$$
\text { for position choose } \mathbf{c}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), \quad X(s) \equiv Y(s)=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s) \Rightarrow
$$

$$
\frac{X(s)}{W(s)}=\frac{1 / m_{1}}{s^{2}+\left(b_{1} / m_{1}\right) s+\left(k_{1} / m_{1}\right)}
$$

for velocity choose $\mathbf{c}=\left(\begin{array}{ll}0 & 1\end{array}\right), \quad V(s) \equiv Y(s)=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s) \Rightarrow$

$$
\frac{V(s)}{W(s)}=\frac{s / m_{1}}{s^{2}+\left(b_{1} / m_{1}\right) s+\left(k_{1} / m_{1}\right)}
$$

Poles are the eigenvalues of A

Consider the eigevalue problem for the matrix \mathbf{A} :

$$
\mathbf{A} \xi=\mu \xi
$$

where the solutions for μ are the eigenvalues and ξ are the eigenvectors.
To solve the eigenvalue problem, we set $\operatorname{det}(\mu \mathbf{I}-\mathbf{A})=0$.
That is, the eigenvalues are the roots of the determinant

$$
\text { of the matrix }(\mu \mathbf{I}-\mathbf{A}) \text {. }
$$

Recall that the state-space solution was

$$
\begin{gathered}
\hat{\mathbf{q}}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s)=\frac{\operatorname{adj}(s \mathbf{I}-\mathbf{A})}{\operatorname{det}(s \mathbf{I}-\mathbf{A})} \mathbf{b} W(s)= \\
=\frac{1}{s^{2}+\left(b_{1} / m_{1}\right) s+\left(k_{1} / m_{1}\right)}\binom{1 / m_{1}}{s / m_{1}} W(s)
\end{gathered}
$$

where $\operatorname{adj}($.$) denotes the adjoint. The same denominator \operatorname{det}(s \mathbf{I}-\mathbf{A})$ appears in the transfer functions for both velocity and position.
This denominator is also referred to as characteristic equation.
Therefore, the poles of the system are the roots of the determinant of the matrix $(s \mathbf{I}-\mathbf{A})$, i.e., the eigenvalues.
The uncompensated 2.004 Tower is a 2nd order system with

$$
\omega_{n}^{2}=\frac{k_{1}}{m_{1}} ; \quad \zeta=\frac{b_{1}}{2 \sqrt{k_{1} m_{1}}}
$$

Therefore the eigenvalues/poles are

$$
s_{ \pm}=-\omega_{n}\left(\zeta \pm \sqrt{\zeta^{2}-1}\right) .
$$

Stability

The system represented by \mathbf{A} is stable if A's eigenvalues have negative real part (i.e., are on the left-hand half-plane.)

The phase diagram is then oriented towards the origin ("sink.")

The system represented by \mathbf{A} is unstable if A's eigenvalues
have positive real part (phase diagram explodes outwards - "source")
and marginally stable if A's eigenvalues
have zero real part (phase diagram rotates around the origin
without either approaching or moving away.)

Eigenvectors and modes

Let's do a specific example: $m_{1}=1, b_{1}=1, k_{1}=1$, that is $\omega_{n}=1, \zeta=1 / 2, s_{ \pm}=-(1 / 2) \pm j \sqrt{3 / 2}$. This system is stable and, in fact, underdamped, consistent with $\zeta<1$ and poles off the real axis.

Now let's compute the eigenvectors, starting with $\xi^{(+)}$ corresponding to the eigenvalue s_{+}:

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \xi^{(+)}=s_{+} \xi^{(+)} \Rightarrow\left\{\begin{aligned}
\xi_{2}^{(+)} & =(-1+j \sqrt{ } 3) \xi_{1}^{(+)} / 2 \\
\xi_{1}^{(+)}+\xi_{2}^{(+)} & =(-1+j \sqrt{3}) \xi_{2}^{(+)} / 2
\end{aligned}\right.
$$

It can be verified that the two equations are equivalent.
Therefore, the eigenvector corresponding to s_{+}is

$$
\xi^{(+)}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}+j \frac{\sqrt{3}}{\sqrt{2}}} \alpha^{(+)}
$$

where $\alpha^{(+)}$is any arbitrary real number. By convention, the eigenvector is written so that if $\alpha^{(+)}=1 \Rightarrow\left|\xi^{(+)}\right|=1$.

Similarly we can find the eigenvector $\xi^{(-)}$
corresponding to the eigenvalue s_{-}:

$$
\xi^{(-)}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}-j \frac{\sqrt{3}}{\sqrt{2}}} \alpha^{(-)} .
$$

The two eigenvectors $\xi^{(+)}, \xi^{(-)}$ are referred to as the modes of the system. The imaginary parts of the corresponding poles are the eigenfrequencies of the modes.

In the uncompensated 2.004 Tower, the two modes are degenerate
because the two poles are conjugate (i.e., they have the same imaginary parts with \pm signs.)
This is true for any 2 nd order system.
The compensated 2.004 Tower is a 4th order system, and so it has two non-degenerate modes.

The significance of a mode is that if the system is excited with a sinusoid of frequency equal to the mode's eigenfrequency, then the response of the system will be the mode itself (i.e., the eigenvector.) At other frequencies, the response is a mixture of modes.

State space representation as block diagram

$$
\begin{aligned}
\dot{\mathbf{q}}(t) & =\mathbf{A} \mathbf{q}(t)+\mathbf{B} w(t), \\
y(t) & =\mathbf{C q}(t) .
\end{aligned}
$$

Figure by MIT OpenCourseWare.
Equivalent block diagram representation as transfer function:

State feedback

Figure by MIT OpenCourseWare.

$$
w(t)=r(t)-\mathbf{K} \mathbf{q}(t) \Rightarrow
$$

$$
\begin{aligned}
\dot{\mathbf{q}}(t) & =\mathbf{A q}(t)+\mathbf{B}(r(t)-\mathbf{K q}), \\
y(t) & =\mathbf{C q}(t) .
\end{aligned} \Rightarrow \begin{aligned}
\dot{\mathbf{q}}(t) & =(\mathbf{A}-\mathbf{B K}) \mathbf{q}(t)+\mathbf{B} r(t) \\
y(t) & =\mathbf{C q}(t)
\end{aligned}
$$

Closed-Loop TF: $\frac{Y(s)}{R(s)}=\mathbf{C}(s \mathbf{I}-\mathbf{A}+\mathbf{B K})^{-1} \mathbf{B}$

Figure by MIT OpenCourseWare.

Design problem: We are given transient response requirements of 9.5% overshoot and 0.74 sec settling time. Moreover, we would like to approximately cancel the zero in the opn-loop transfer function.

To meet these goals, we select two closed-loop poles at $-5.4 \pm j 7.2$. These meet the transient reponse requirements. Moreover, we select an additional closed-loop pole at -5.1 to approximately cancel the open-loop zero. Therefore, the desired closed-loop transfer function should be proportional to

$$
\frac{(s+5)}{(s+5.1)(s+5.4-j 7.2)(s+5.4+j 7.2)}=\frac{(s+5)}{s^{3}+15.9 s^{2}+136 s+413} .
$$

Next we convert the given transfer function to a state-space representation. This is done by first considering a system without the open-loop zeros, i.e. of the form

$$
\frac{X(s)}{W(s)}=\frac{1}{s(s+1)(s+4)}=\frac{1}{s^{3}+5 s^{2}+4 s} \Leftrightarrow x^{(3)}+5 \ddot{x}+4 \dot{x}=w
$$

The state variable are selected as

$$
\mathbf{q}=\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{c}
x \\
\dot{x} \\
\ddot{x}
\end{array}\right) \Rightarrow \mathbf{A}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -4 & -5
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

This choise of state variables is also known as phase-variable form, because it agrees with the phase diagram representation that we saw earlier (except in this case we have a 3 rd order system, and hence three state/phase variables: position, velocity, acceleration.)

We also need to determine the observation matrix C. Since the open-loop transfer function has a zero, the response includes a derivative term; that is,

$$
Y(s)=20(s+5) X(s) \Rightarrow y(t)=20[\dot{x}(t)+5 x(t)]=20\left(q_{2}+5 q_{1}\right) \Rightarrow \mathbf{c}=\left(\begin{array}{lll}
100 & 20 & 0
\end{array}\right)^{\mathrm{T}}
$$

The closed-loop transfer function is
 $$
0)^{\mathrm{Th}}
$$

$$
\frac{Y(s)}{R(s)}=\frac{20(s+5)}{s^{3}+15.9 s^{2}+136 s+413}
$$

