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Today’s goals

• State space so far
– Definition of state variables
– Writing the state equations
– Solution of the state equations in the Laplace domain
– Phase space and phase diagrams

• Today
– Stability in state space
– State feedback control  
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State space overview

From the Equation of Motion to the State—Space representation:

mẍ(t)+bẋ(t)+kx(t) = w(t)→

µ
x
ẋ

¶
≡ q(t) =

µ
q1
q2

¶
state, y(t) ≡ ẋ(t) output

⇒ q̇(t) =

µ
q̇1
q̇2

¶
=

µ
0 1

−k/m −b/m

¶µ
q1
q2

¶
+

µ
0
1

¶
w(t); y(t) = (0 1)

µ
q1
q2

¶
≡ cq.

k1

b1

m1

x1
tower
sway

w

A=

µ
0 1

−k/m −b/m

¶

b =

µ
0
1

¶
Solution to the state equations:

sq̂(s) = Aq̂(s) + bW (s)⇒

q̂(s) = (sI−A)−1 bW (s).

Y (s) = cq̂(s) = c (sI−A)−1 bW (s).
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State space solution to the uncompensated 2.004 Tower model

q̂(s) = (sI−A)−1 bW (s) =
1

s2 + (b1/m1) s+ (k1/m1)

µ
1/m1

s/m1

¶
W (s).

From this result we can obtain transfer functions for position, velocity:

for position choose c = (1 0) , X(s) ≡ Y (s) = c (sI−A)−1 bW (s)⇒

X(s)

W (s)
=

1/m1

s2 + (b1/m1) s+ (k1/m1)
.

for velocity choose c = (0 1) , V (s) ≡ Y (s) = c (sI−A)−1 bW (s)⇒

V (s)

W (s)
=

s/m1

s2 + (b1/m1) s+ (k1/m1)
.

position velocity phase diagram
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Poles are the eigenvalues of A      | Stability
Consider the eigevalue problem for the matrix A:

Aξ = μξ,

where the solutions for μ are the eigenvalues and ξ are the eigenvectors.
To solve the eigenvalue problem, we set det (μI−A) = 0.
That is, the eigenvalues are the roots of the determinant

of the matrix (μI−A).

Recall that the state—space solution was

q̂(s) = (sI−A)−1 bW (s) =
adj (sI−A)

det (sI−A)
bW (s) =

=
1

s2 + (b1/m1) s+ (k1/m1)

µ
1/m1

s/m1

¶
W (s),

where adj(.) denotes the adjoint. The same denominator det (sI−A)
appears in the transfer functions for both velocity and position.
This denominator is also referred to as characteristic equation.
Therefore, the poles of the system are the roots of the determinant

of the matrix (sI−A), i.e., the eigenvalues.
The uncompensated 2.004 Tower is a 2nd order system with

ω2n =
k1
m1
; ζ =

b1

2
√
k1m1

Therefore the eigenvalues/poles are

s± = −ωn
³
ζ ±

p
ζ2 − 1

´
.

The system represented by A is
stable if A’s eigenvalues
have negative real part

(i.e., are on the left—hand half—plane.)
The phase diagram is then oriented

towards the origin (“sink.”)

ve
lo

ci
ty

position
The system represented by A is
unstable if A’s eigenvalues

have positive real part (phase diagram
explodes outwards — “source”)

and marginally stable if A’s eigenvalues
have zero real part (phase diagram

rotates around the origin
without either approaching or moving away.)
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Eigenvectors and modes
Let’s do a specific example: m1 = 1, b1 = 1, k1 = 1,
that is ωn = 1, ζ = 1/2, s± = −(1/2)± j

p
3/2.

This system is stable and, in fact, underdamped,
consistent with ζ < 1 and poles off the real axis.

Now let’s compute the eigenvectors, starting with ξ(+)

corresponding to the eigenvalue s+:µ
0 1
−1 −1

¶
ξ(+) = s+ξ

(+) ⇒

(
ξ
(+)
2 =

¡
−1 + j

√
3
¢
ξ
(+)
1 /2

ξ
(+)
1 + ξ

(+)
2 =

¡
−1 + j

√
3
¢
ξ
(+)
2 /2.

It can be verified that the two equations are equivalent.
Therefore, the eigenvector corresponding to s+ is

ξ(+) =

⎛⎜⎜⎝
1
√
2

−
1
√
2
+ j

√
3

√
2

⎞⎟⎟⎠α(+),

where α(+) is any arbitrary real number. By convention,
the eigenvector is written so that if α(+) = 1⇒

¯̄
ξ(+)

¯̄
= 1.

Similarly we can find the eigenvector ξ(−)

corresponding to the eigenvalue s−:

ξ(−) =

⎛⎜⎜⎝
1
√
2

−
1
√
2
− j

√
3

√
2

⎞⎟⎟⎠α(−).

The two eigenvectors ξ(+), ξ(−)

are referred to as the modes of the system.
The imaginary parts of the corresponding poles

are the eigenfrequencies of the modes.
In the uncompensated 2.004 Tower,
the two modes are degenerate

because the two poles are conjugate
(i.e., they have the same imaginary

parts with ± signs.)
This is true for any 2nd order system.

The compensated 2.004 Tower
is a 4th order system, and so it has

two non—degenerate modes.

The significance of a mode
is that if the system is excited

with a sinusoid of frequency equal
to the mode’s eigenfrequency,

then the response of the system will
be the mode itself (i.e., the eigenvector.)
At other frequencies, the response

is a mixture of modes.
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State space representation as block diagram

w
B

q

A

C
y+

+

q.

Figure by MIT OpenCourseWare.

q̇(t) = Aq(t) +Bw(t),

y(t) = Cq(t).

C (sI−A)−1B
W (s) Y (s)

Equivalent block diagram representation as transfer function:
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State feedback

w(t) = r(t)−Kq(t)⇒

q̇(t) = Aq(t) +B
³
r(t)−Kq

´
,

y(t) = Cq(t).

q̇(t) =
³
A−BK

´
q(t) +Br(t),

y(t) = Cq(t).
⇒

Closed—Loop TF:
Y (s)

R(s)
= C (sI−A+BK)−1B

wr
B

q

A

K

C
y+

+

+

-

q.

Figure by MIT OpenCourseWare.
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Example

Design problem: We are given transient response requirements of 9.5% over-
shoot and 0.74sec settling time. Moreover, we would like to approximately
cancel the zero in the opn—loop transfer function.

To meet these goals, we select two closed—loop poles at −5.4 ± j7.2. These
meet the transient reponse requirements. Moreover, we select an additional
closed—loop pole at −5.1 to approximately cancel the open—loop zero. Therefore,
the desired closed—loop transfer function should be proportional to

(s+ 5)

(s+ 5.1)(s+ 5.4− j7.2)(s+ 5.4 + j7.2)
=

(s+ 5)

s3 + 15.9s2 + 136s+ 413
.

Next we convert the given transfer function to a state—space representation.
This is done by first considering a system without the open—loop zeros, i.e. of
the form

X(s)

W (s)
=

1

s(s+ 1)(s+ 4)
=

1

s3 + 5s2 + 4s
⇔ x(3) + 5ẍ+ 4ẋ = w.

The state variable are selected as

q =

⎛⎝ q1
q2
q3

⎞⎠ =

⎛⎝ x
ẋ
ẍ

⎞⎠⇒ A =

⎛⎝ 0 1 0
0 0 1
0 −4 −5

⎞⎠ , b =

⎛⎝ 0
0
1

⎞⎠ .
This choise of state variables is also known as phase—variable form, because
it agrees with the phase diagram representation that we saw earlier (except in
this case we have a 3rd order system, and hence three state/phase variables:
position, velocity, acceleration.)

We also need to determine the observation matrix C. Since the open—loop
transfer function has a zero, the response includes a derivative term; that is,

Y (s) = 20(s+5)X(s)⇒ y(t) = 20
h
ẋ(t) + 5x(t)

i
= 20(q2+5q1)⇒ c = (100 20 0) .

Let the gain matrix be

K = (k1 k2 k3)⇒ BK =

⎛⎝ 0
0
1

⎞⎠ (k1 k2 k3) =

⎛⎝ 0 0 0
0 0 0
k1 k2 k3

⎞⎠

⇒ A−BK =

⎛⎝ 0 1 0
0 0 1
−k1 −(4 + k2) −(5 + k3)

⎞⎠
The denominator of the transfer function is the determinant of the matrix

sI−A+BK =

⎛⎝ s −1 0
0 s −1

s+ k1 s+ (4 + k2) s+ (5 + k3)

⎞⎠
det

³
sI−A+BK

´
= s3 + (5 + k3)s

2 + (4 + k2)s+ k1.

Equating coefficients with the desired denominator (characteristic equation) s3+
15.9s2 + 136s+ 413, we obtain the gains

k1 = 413; k2 = 132; k3 = 10.9.

The state space representation of the closed—loop system is

q̇ =

⎛⎝ 0 1 0
0 0 1

−413 −136 −15.9

⎞⎠q+
⎛⎝ 0
0
1

⎞⎠ r.
y = (100 20 0)q.

The closed—loop transfer function is

Y (s)

R(s)
=

20(s+ 5)

s3 + 15.9s2 + 136s+ 413
.

(Nise 12.1)

W(s)
G(s)

20(s + 5)
s(s + 1)(s + 4)

=
Y(s)

Figure by MIT OpenCourseWare.
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