Summary: Compensator design using the Root Locus; State Space

generic system block diagram with controller/compensator and feedback
purpose: to improve the system's dynamics by proper choice of the controller TF and gain

$$
\text { Open-Loop TF: } K G_{p}(s) G_{c}(s) H(s) \text { Closed-Loop TF: } \frac{K G_{p}(s) G_{c}(s)}{1+K G_{p}(s) G_{c}(s) H(s)}
$$

Root Locus sketching rules (negative feedback)

- Rule 1: \# branches = \# open-loop poles
- Rule 2: symmetrical about the real axis
- Rule 3: real-axis segments are to the left of an odd number of real-axis finite open-loop poles/zeros
- Rule 4: RL begins at open-loop poles ($K=0$), ends at open-loop zeros $(K=\infty)$
- Rule 5: Asymptotes: real-axis intercept σ_{a}, angles θ_{a}
$\sigma_{a}=\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }- \text { \#finite zeros }} \quad \theta_{a}=\frac{(2 m+1) \pi}{\# \text { finite poles }-\# \text { finite zeros }} \quad m=0, \pm 1, \pm 2, \ldots$
- Rule 6: Real-axis break-in and breakaway points

Found by setting $\quad K(\sigma)=-\frac{1}{G(\sigma) H(\sigma)} \quad(\sigma$ real $) \quad$ and solving $\quad \frac{\mathrm{d} K(\sigma)}{\mathrm{d} \sigma}=0 \quad$ for real σ.

- Rule 7: Imaginary axis crossings (transition to instability)

Found by setting $K G(j \omega) H(j \omega)=-1 \quad$ and solving $\left\{\begin{array}{l}\operatorname{Re}[K G(j \omega) H(j \omega)]=-1, \\ \operatorname{Im}[K G(j \omega) H(j \omega)]=0 .\end{array}\right.$
$\sigma \equiv \operatorname{Re}\{s\}$

Summary: Compensator design using the Root Locus; State Space

Here, Open Loop poles are $p_{1}=0,-p_{2}=-2$, Open Loop zero is $-z=-4$. Geometrical interpretation of the amplitude and phase contributions to s :
$l_{p 1}=\left|s+p_{1}\right|=|s| ; \quad l_{p 2}=\left|s+p_{2}\right|=|s+2| ; \quad l_{z}=|s+z|=|s+4| ;$
$\theta_{p 1}=\angle\left(s+p_{1}\right)=\angle s ; \quad \theta_{p 2}=\angle\left(s+p_{2}\right)=\angle(s+2) ; \quad \theta_{z}=\angle(s+z)=\angle(s+4)$.
Since the point s shown as crimson block belongs to the Root Locus,

$$
\Rightarrow\left\{\begin{array}{l}
K=\frac{|s||s+2|}{|s+4|}=\frac{l_{p 1} l_{p 2}}{l_{z}} \\
\angle(s+4)-\angle s-\angle(s+2)=\theta_{z}-\theta_{p 1}-\theta_{p 2}=-\pi
\end{array}\right.
$$

The crimson block is at $s=-2+j 2$ on the Root Locus. Using geometry,

$$
\begin{array}{ccc}
l_{p 1}=|s|=2 \sqrt{2} ; & l_{p 2}=|s+2|=2 ; & l_{z}=|s+4|=2 \sqrt{2} \\
\theta_{p 1}=\angle s=3 \pi / 4 ; & \theta_{p 2}=\angle(s+2)=\pi / 2 ; & \theta_{z}=\angle(s+4)=\pi / 4 .
\end{array}
$$

We can see that indeed the angular contributions add up as

$$
\theta_{z}-\theta_{p 1}-\theta_{p 2}=-\pi,
$$

while the amplitude contributions give $K=(2 \sqrt{2} \times 2) /(2 \sqrt{2}) \Rightarrow K=2$.

$\mathrm{TF}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$.

- Settling time
$T_{s} \approx 4 /\left(\zeta \omega_{n}\right) ;$
- Damped osc. frequency $\omega_{d}=\sqrt{1-\zeta^{2}} \omega_{n}$
$\cos \theta=\zeta$
$\sqrt{1}$
- Overshoot $\% \mathrm{OS}$

State Space \& Phase Space

From the Equation of Motion to the State-Space representation:
$m \ddot{x}(t)+b \dot{x}(t)+k x(t)=w(t) \rightarrow\binom{x}{\dot{x}} \equiv \mathbf{q}(t)=\binom{q_{1}}{q_{2}}$ state, $\quad y(t) \equiv \dot{x}(t)$ output
$\Rightarrow \dot{\mathbf{q}}(t)=\binom{\dot{q}_{1}}{\dot{q}_{2}}=\left(\begin{array}{cc}0 & 1 \\ -k / m & -b / m\end{array}\right)\binom{q_{1}}{q_{2}}+\binom{0}{1} w(t) ; \quad y(t)=\left(\begin{array}{ll}0 & 1\end{array}\right)\binom{q_{1}}{q_{2}} \equiv \mathbf{c q}$.
$\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -k / m & -b / m\end{array}\right) \quad \begin{gathered}\text { Solution to the state equations: }\end{gathered}$
$\mathbf{b}=\binom{0}{1}$

$$
s \hat{\mathbf{q}}(s)=\mathbf{A} \hat{\mathbf{q}}(s)+\mathbf{b} W(s) \Rightarrow
$$

$$
\hat{\mathbf{q}}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s)
$$

$$
Y(s)=\mathbf{c} \hat{\mathbf{q}}(s)=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} W(s) .
$$

