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Today’s goals

• So far
– Feedback as a means for specifying the dynamic response of a system
– Root Locus: from the open-loop poles/zeros to the closed-loop poles
– “Moving the closed-loop poles around”

• Proportional control: moving on the original Root Locus
• Proportional-Derivative control: adding a zero/ speeding up the response/

maintaining constant overshoot
• Proportional-Integral control: adding a free integrator (pole@origin) and a 

zero/ fixing steady-state error/ maintaining the speed and overshoot
• Today

– The 2.004 Lab Tower plant
– Impulse response and how it relates to the step response and the transfer 

function
– State space: monitoring more than one dynamical variables at the same time  
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The need for sway compensation in buildings

Taipei 101; 101 floors; 448m tall (roof); 508m (spire)

Distributed active 
compensation system

www.atcouncil.org

WIND

SWAY

Image from Wikimedia Commons, http://commons.wikimedia.org

http://commons.wikimedia.org


Lecture 24 – Friday, Nov. 22.004 Fall ’07 

The 2.004 Tower

Actuator:
Voice Coil

Air Bearings

SpringMEMS 
Accelerometer

Relative 
Velocity

Velocity Sensor:
Voice Coil

Wind Force:
impulse

Goals: • Model
• Control

• Design
• Implement
• Test
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Modeling the 2.004 Tower

slider mass
spring,
damper

wind force

actuator

sensorscontroller

actuator force

w

a

k1

b1

b2

k2 m2

m1

x1

w(t)

a(t)

x2

m1 tower mass,
k1 tower compliance,
b1 tower damping (viscous),
m2 slider mass,
k2 spring on slider,
b2 (viscous) damping on slider;

w(t) wind force (impulse) on tower,
a(t) actuator force on slider.

sliding
direction

tower

slider
displacement

building
sway



2.004 Fall ’07 Lecture 24 – Friday, Nov. 2

Reminder from Lecture 3: the delta (impulse) function
Impulse function (aka Dirac function)

t

δ(t)

t = 0
It represents a pulse of

• infinitessimally small duration; and

• finite energy.
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Figure by MIT OpenCourseWare.

Nise Table 2.1
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Impulse response

δ(t)

input: impulse impulse response

Plant or system

Time domain

Laplace domain

L{δ(t)} = 1 Plant or system

input: Laplace[impulse]
G(s)

Laplace[impulse response]

1×G(s) = G(s)

The Laplace transform of the impulse response
is the Laplace transform of the transfer function
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Impulse response and step response
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Controling the tower
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output dynamical variable

input

controller
control dynamical variable

The objective of control is to minimize the output (tower sway)
subject to an impulse input (wind force)

ẋ1 ẍ1x1

The controller’s actuation (force) is applied on an intermediate dynamical variable
(slider displacement.) Moreover, there is a choice of feedback variables

(e.g., tower displacement      , velocity      , acceleration   )
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Let’s start with a simpler system …
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We begin by considering the tower by itself,
i.e., without the slider-spring-damper compensation system.

Our goal is to see how can access intermediate dynamical variables
(such as the tower’s velocity) from a single dynamical model
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Force balance on the uncompensated tower

k1

b1

m1

x1
tower
sway

w

ẋ1 ≡ v1
tower

velocity

Wind force w(t)

Tower inertia −m1ẍ1(t)

Tower damping − b1ẋ1(t)

Tower compliance − k1x1(t)

Force balance: w(t)−m1ẍ1(t)− b1ẋ1(t)− k1x1(t) = 0⇒

m1ẍ1(t) + b1ẋ1(t) + k1x1(t) = w(t)

(equation of motion)
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From the equation of motion to the state-space
representation
Recall: we would like to model two dynamical variables simultaneously: the
tower position x1(t) and the tower velocity ẋ1(t) ≡ v1(t). To see if we can
achieve this goal, let us define a state vector

q(t) =

µ
q1(t)
q2(t)

¶
=

µ
x1(t)
v1(t)

¶
.

The state vector components q1(t), q2(t) are called state variables. Now let’s
try to write a differential equation for this vector that is equivalent to the original
system’s equation of motion. That is, we need to compute the derivatives q̇1(t),
q̇2(t) as function of q1(t), q2(t).

The differential equation that we target should be 1st—order (i.e., involving
only the first derivatives of the state variables) and it should involve linearly
independent variables. For example, if it turned out that q2(t) = (constant)×
q1(t), then our attempt would not have worked. Fortunately, that is not the
case with our choice of tower displacement and velocity as state variables. There
are formal rules for selecting state variables while avoiding linear dependence
between them; we are not yet ready to cover these rules in detail.
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From the equation of motion to the state-space
representation
Taking linear independence as given, we begin from the obvious place, the def-
inition of velocity:

ẋ1(t) = v1(t)⇒ q̇1(t) = q2(t).

We can also re—write the equation of motion in terms of the state variables:

m1ẍ1(t) + b1ẋ1(t) + k1x1(t) = w(t)⇒ m1q̇2(t) + b1q2(t) + k1q1(t) = w(t).

We can solve the above equation for q̇2(t):

q̇2(t) = −
k1
m1
q1(t)−

b1
m1
q2(t) +

1

m1
w(t).

We have reached our goal, and we can do even better by combining the two 1st—

order scalar differential equations into a single 1st—order vector differential

equation:

µ
q̇1(t)
q̇2(t)

¶
=

µ
0 1

−k1/m1 −b1/m1

¶µ
q1(t)
q2(t)

¶
+

µ
0

1/m1

¶
w(t).
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From the equation of motion to the state-space
representation
The equation we have just derived is the state equation of motion which
expresses the dynamics of our system in vector—matrix notation. More formally,
it is written as

q̇(t) = Aq(t) + bw(t),

where the matrix A and vector b are

A =

µ
0 1

−k1/m1 −b1/m1

¶
, b =

µ
0

1/m1

¶
,

and are called the system matrix and input vector, respectively. (The input
vector is also referred to as “excitation vector.”)

Note that in our uncompensated tower system, there is a single input, which in
fact happens to be a disturbance that we intend to cancel in the compensated
system. However, the state—space formulation allows us to handle multiple
inputs as well, by replacing the scalar w(t) by a vector of inputs and the input
vector b by an input matrix B. In this class, we will deal with single—input
single—output systems only. [In the compensated tower, the actuation force a(t)
will be the input and w(t) will be treated as a disturbance.]
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From the equation of motion to the state-space
representation
Another benefit of the state—space approach is that we need not be constrained
to a single output. We can define the system output y(t) as a scalar that
might be either the tower’s position or its velocity, as follows. Let

y(t) = cq(t), where c = (c1 c2) .

We refer to c as the output vector. For example, by choosing

c = (1 0)⇒ y(t) = (1 0)

µ
q1(t)
q2(t)

¶
= q1(t) = x1(t)

we have selected the tower’s displacement x1(t) to be the output. Or, choosing

c = (0 1)⇒ y(t) = (0 1)

µ
q1(t)
q2(t)

¶
= q2(t) = v1(t)

so now the output is the tower velocity v1(t). We may choose y(t) to be any
linear combination of the state variables, e.g. c = (0.1 0.9). We might also
opt for more than one variables, in which case y(t) and c would become a vector
and matrix, respectively.
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From the equation of motion to the state-space
representation
The combination of equations

q̇(t) = Aq(t) + bw(t), [dynamics—equation of motion]

y(t) = cq(t) [output or observation equation]

are the state equations or state—space representation of our system. If
you look this up in Nise’s textbook or in the literature, you will probably see
a slightly more general form, where the vectors b and c are replaced by matri-
ces (this is to handle multiple—input multiple—output systems, as we’ve pointed
out); and the output contains an additional term that is a linear combination
of the inputs. These representations are used for full generality in more ad-
vanced contexts; for our tower compensation problem and the scope of material
that we cover in this class, the reduced single—input single—output state—space
representation given here will suffice.

In Problem Set 8, we will walk you through the derivation of a state—space
representation for the compensated 2.004 tower (pages 4 and 8 of these notes)
where w(t) is treated as a disturbance and a(t) is the input. While you develop
the model in the lab, in the lectures we will learn how to add state—space to our
existing arsenal of control techniques (root locus, P/PI/PD compensators, etc.)
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