Root Locus sketching rules

Wednesday

- Rule 1: \# branches = \# poles
- Rule 2: symmetrical about the real axis
- Rule 3: real-axis segments are to the left of an odd number of realaxis finite poles/zeros
- Rule 4: RL begins at poles, ends at zeros

Today

- Rule 5: Asymptotes: angles, real-axis intercept
- Rule 6: Real-axis break-in and breakaway points
- Rule 7: Imaginary axis crossings (transition to instability) Next week
- Using the root locus: analysis and design examples

Poles and zeros at infinity

$T(s)$ has a zero at infinity if $T(s \rightarrow \infty) \rightarrow 0$.
$T(s)$ has a pole at infinity if $T(s \rightarrow \infty) \rightarrow \infty$.

Example

$$
K G(s) H(s)=\frac{K}{s(s+1)(s+2)}
$$

Clearly, this open-loop transfer function has three poles, $0,-1,-2$. It has no finite zeros.
For large s, we can see that

$$
K G(s) H(s) \approx \frac{K}{s^{3}}
$$

So this open-loop transfer function has three zeros at infinity.

Root Locus sketching rules

- Rule 5: Asymptotes: angles and real-axis intercept

Figure by MIT OpenCourseWare.

Root Locus sketching rules

- Rule 6: Real axis break-in and breakaway points

Figure by MIT OpenCourseWare.
Nise Figure 8.13

For each $s=\sigma$ on a real-axis segment of the root locus,

$$
\begin{equation*}
K G(\sigma) H(\sigma)=-1 \Rightarrow K=-\frac{1}{G(\sigma) H(\sigma)} \tag{1}
\end{equation*}
$$

Real-axis break-in \& breakaway points are the real values of σ for which

$$
\frac{\mathrm{d} K(\sigma)}{\mathrm{d} \sigma}=0
$$

where $K(\sigma)$ is given by (1) above. Alternatively, we can solve

$$
\sum \frac{1}{\sigma+z_{i}}=\sum \frac{1}{\sigma+p_{i}}
$$

for real σ.

Root Locus sketching rules

- Rule 6: Real axis break-in and breakaway points

In this example,

$$
K G(s) H(s)=\frac{K(s-3)(s-5)}{(s+1)(s+2)}
$$

Figure by MIT OpenCourseWare.
so on the real-axis segments we have

$$
K(\sigma)=-\frac{(\sigma+1)(\sigma+2)}{(\sigma-3)(\sigma-5)}=-\frac{\sigma^{2}+3 \sigma+2}{\sigma^{2}-8 \sigma+15}
$$

Taking the derivative,

$$
\frac{\mathrm{d} K}{\mathrm{~d} \sigma}=-\frac{11 \sigma^{2}-26 \sigma-61}{\left(\sigma^{2}-8 \sigma+15\right)^{2}}
$$

and setting $\mathrm{d} K / \mathrm{d} \sigma=0$ we find

$$
\sigma_{1}=-1.45 \quad \sigma_{2}=3.82
$$

Alternatively, poles $=\{-1,-2\}$, zeros $=\{+3,+5\}$ so we must solve

$$
\frac{1}{\sigma-3}+\frac{1}{\sigma-5}=\frac{1}{\sigma+1}+\frac{1}{\sigma+2} \Rightarrow
$$

$$
11 \sigma^{2}-26 \sigma-61=0
$$

This is the same equation as before.

Root Locus sketching rules

- Rule 7: Imaginary axis crossings

Figure by MIT OpenCourseWare.

If $s=j \omega$ is a closed-loop pole on the imaginary axis, then

$$
\begin{equation*}
K G(j \omega) H(j \omega)=-1 \tag{2}
\end{equation*}
$$

The real and imaginary parts of (2) provide us with a 2×2 system of equations, which we can solve for the two unknowns K and ω (i.e., the critical gain beyond which the system goes unstable, and the oscillation frequency at the critical gain.)

Note: Nise suggests using the RuthHurwitz criterion for the same purpose. Since we did not cover Ruth-Hurwitz, we present here an alternative but just as effective method.

Root Locus sketching rules

- Rule 7: Imaginary axis crossings

Figure by MIT OpenCourseWare.

In this example,

$$
\begin{aligned}
& K G(s) H(s)=\frac{K(s+3)}{s(s+1)(s+2)(s+4)} \\
&=\frac{K s+3 K}{s^{4}+7 s^{3}+14 s^{2}+8 s} \Rightarrow \\
& K G(j \omega) H(j \omega)=\frac{j K \omega+3 K}{\omega^{4}-j 7 \omega^{3}-14 \omega^{2}+j 8 \omega} . \\
& \text { Setting } K G(j \omega) H(j \omega)=-1 \\
&-\omega^{4}+j 7 \omega^{3}+14 \omega^{2}-j(8+K) \omega-3 K=0
\end{aligned}
$$

Separating real and imaginary parts,

$$
\left\{\begin{aligned}
-\omega^{4}+14 \omega^{2}-3 K & =0 \\
7 \omega^{3}-(8+K) \omega & =0
\end{aligned}\right.
$$

In the second equation, we can discard the trivial solution $\omega=0$. It then yields

$$
\omega^{2}=\frac{8+K}{7}
$$

Substituting into the first equation,

$$
\begin{aligned}
-\left(\frac{8+K}{7}\right)^{2}+14\left(\frac{8+K}{7}\right)-3 K & =0 \Rightarrow \\
K^{2}+65 K-720 & =0
\end{aligned}
$$

Of the two solutions $K=-74.65, K=9.65$ we can discard the negative one (negative feedback $\Rightarrow K>0$).

Thus, $K=9.65$ and $\omega=\sqrt{(8+9.65) / 7}=1.59$.

