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Supplement to Lecture 12 
Dynamics of a DC Motor with Pinion Rack Load and Velocity Feedback 

The system given in Lecture 12 (Figure a on cover page) was a DC motor connected 
to a pinion rack with a mass–damper load. The motor was connected in a velocity– 
feedback configuration with a differential op–amp providing the error signal. Here we 
summarize the analysis of this system. 

Plant transfer function 
We begin by analyzing the plant, i.e., the motor connected directly to a voltage 

source input vs(t) and velocity output v(t). The result that we are about to derive is 
referred to as the “plant model.” After we know the plant model, we can proceed to 
model the entire system which includes the velocity feedback loop. 

To analyze the plant, we begin by writing the by–now familiar electrical equation 
of motion that is derived from KVL on the electrical circuit including the motor: 

vs(t) − i(t)R − ve(t) = 0 ⇒ vs(t) = i(t)R + Kvω(t), (1) 

where we used the relationship ve = Kvω for the motor’s back–emf. In the Laplace 
domain, this equation becomes 

Vs(s) = I(s)R + KvΩ(s). (2) 

Next we must write the mechanical equation of motion as torque balance on the 
motor’s shaft. The motor’s torque is provided by the electrical current through the 
windings, and is Kmi(t). There are three torques counteracting the motor: (i) the 
pinion inertia J , (ii) the rotational viscous damper D, and (iii) the torque exercised 
by the translational elements (mass M and translational viscous damper fv) via the 
pinion gear. Since at the moment we do not know how to express torque (iii), let us 
denote it by Tp. The time–domain equation of motion of the motor shaft then becomes 

Kmi(t) = Jω̇(t) + Dω(t) + Tp(t). (3) 

In the Laplace domain, the equation of motion is re–written as 

KmI(s) = JsΩ(s) + DΩ(s) + Tp(s). (4) 

We still have to find Tp(s). This is done by force–balance on the translational part of 
the load, i.e. the pinion’s rack that carries the mass M . If Fp(t) denotes the force by 
the pinion on the rack, then in the time domain we have 

Fp(t) = Mv̇(t) + fvv(t), (5) 

1 



or, in the Laplace domain, 

Fp(s) = MsV (s) + fvV (s). (6) 

We can now relate the pinion torque Tp to the pinion force Fp and the angular velocity 
ω to the translational velocity v. Assuming that the pinion is perfectly cylindrical and 
neglecting backlash or other nonlinearities due to the gears, then in the time–domain 
we have 

Tp(t) = rFp(t), (7) 

v(t) = rω(t). (8) 

In the Laplace domain, we equivalently have 

Tp(s) = rFp(s), (9) 

V (s) = rΩ(s). (10) 

Finally, we need to collect all the above results towards a “plant transfer function” of 
the form V (s)/Vs(s) (Laplace transform of the output velocity v divided by the Laplace 
transform of the input voltage vs.) To do this, we must eliminate the intermediate 
dynamical variables I(s), Ω(s), Tp(s), and Fp(s). This is done by first substituting (6), 
(9) and (10) to (4) to obtain 

KmI(s) = (Js + D) 
V (s)

+ r (Ms + fv) V (s) ⇒ 
r
�

J + r2M D + r2fv 
�


I(s) = s + V (s). (11)
rKm rKm 

Now that we have a relationship between current I(s) and translational velocity V (s), 
we substitute it in (2) along with (10) to obtain 

�
J + r2M D + r2fv 

� 
V (s)

Vs(s) = s + RV (s) + Kv . (12)
rKm rKm r 

We are basically done; all that’s left is to rewrite (12) in proper transfer function form, 
clearly indicating the location of the pole: 

rKm 

V (s) R 
�
J + r 2M

� 

Vs(s)
= 

D + r 2fv + KmKv/R 
. (13) 

s + 
J + r 2M 

Substituting the (revised) numerical values R = 1Ω, Km = 1 N · m/ A. Kv = 
1 V · sec/√rad, J = 0.1 kg · m2 , D = 0.5 kg · m2/ ( rad · sec), M = 9 kg, fv = 5 kg/ sec 
and r = 0.1 m = 0.3162 m, we obtain 

V (s) 0.3162 
� 

m/ sec
� 

= . (14)
Vs(s) s + 2 V 
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Feedback transfer function 
The velocity output is measured by a tachometer and fed back via a differential 

amplifier. It is important to note that the tachometer converts the velocity to a voltage; 
that voltage is then used as input in the negative terminal of the op–amp. The positive 
terminal is connected to a reference voltage. We will now take a few steps to appreciate 
the significance of the feedback and reference voltages. 

Looking first at the feedback loop, we model the tachometer as producing a voltage 
Vtach equal in numerical value to the translational velocity v of the mass. This means 
that � 

Volts 
�

Vtach(t) [ Volts] = 1 v(t). (15) 
m · sec 

This relationship expresses an ideal “linear transducer with unit gain.” It is especially 
important to note that the unit conversion requires the presence of a unity gain with 
units Volts/ ( m/ sec). In many practical situations the relationship is not unity; we 
would then have to take transduction into account as a non–unity gain in the feedback 
path. Moreover, many transducers are approximately linear but saturate or exhibit 
other types of nonlinearities if the measured variables (the velocity, in this case) be
come too large. In the interest of keeping this discussion as clear as possible, we will 
neglect these practical difficulties and assume an ideal unity–gain tachometer; as we 
proceed with the solution of this ideal case, however, it is important to keep in mind 
its limitations in actual systems. Also, to avoid notational clutter we will hereafter 
cease the explicit mention of units in each equation.1 

As we have learnt in Lab 3, the voltage at the output of the differential amplifier 
is given by 

R2 
(Vref − Vtach) . (16)

R1 

We also know that the motor circuit does not load the op–amp (the reason we use the 
op–amp in the first place is that it produces a voltage independent of the load—again, 
under ideal conditions.) Therefore, the source voltage applied to the DC motor in the 
feedback configuration is 

Vs(s) = 
R2 

(Vref − Vtach) ≡ K (Vref − Vtach) , (17)
R1 

where we have denoted K ≡ R2/R1. We will refer to K as the “feedback gain,” for 
reasons that will become apparent shortly. 

Collecting the above results from the plant and the feedback loop analysis, we can 
see that the feedback system is adequately represented as shown in Figure b on the 
cover page. The box labeled as “plant & controller” represents the cascade of the 
op–amp with the plant.2 The box labeled “feedback” represents the tachometer. 

1In real life we should be prepared to reproduce the units associated with each equation as needed, 
and occasionally use them as sanity check! 

2The plant transfer function is particularly simple yet it includes the electrical and mechanical 
dynamics of the DC motor including the rotational part (shaft with pinion) and the translational part 
(rack geared to the pinion and carrying the mass load.) 
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Using the closed–loop transfer function that we derived in class and is shown again 
in Figure c on the cover page, we obtain 

V (s) 0.3162K 
= .	 (18)

Vref(s) s + 2 + 0.3162K 

Interpretation of the feedback transfer function 
To appreciate the effect of feedback in system behavior, we first start by comparing 

the closed–loop transfer function (18) to the plant (open–loop) transfer function (14). 
We observe the following: 

1. The plant’s pole is at	−2 rad/ sec; whereas the closed–loop pole depends on 
the feedback gain K and is located at −2 − 0.3162K. Therefore, the plant’s 
time constant is τ = 0.5 sec whereas the closed–loop system’s time constant is 
τ = 1/ (2 + 0.3162K) sec. In this system, as we increase the gain K the closed– 
loop system pole moves to the left on the s–plane; therefore, the closed–loop system 
response becomes faster. 

2. The plant’s steady state value is v = 0.1581 m/ sec; whereas the closed–loop ∞
system’s steady–state value also depends on the feedback gain K and is v = ∞
0.3162K/ (2 + 0.3162K). In this system, as we increase the gain K the closed– 
loop system’s steady–state value approaches 1; therefore, for large K the output 
velocity is numerically approximately equal to the reference voltage Vref. 

The first observation means that we can specify (“control”) the feedback system’s 
time constant (“speed”) by changing the gain K. The second observation means that, 
for large K, the feedback system acts to approximately match its output (velocity) 
to the reference input (voltage.) In other words, if we apply a step function voltage 
Vref = V0u(t) and wait for a few time constants, the feedback system’s output will 
match (numerically) our reference voltage amplitude V0. With some thought, you can 
convince yourselves that, in fact, any time we change Vref externally, the system will 
“race” to approximately match the velocity v to our new reference; and it will do so at 
very high speed because high gain K also implies very small closed–loop time constant. 

It is important to note that, even though for large feedback gain K the closed–loop 
system’s steady state is approximately equal to unity, it is not exactly so; the difference 
is called the “steady state error” and in this case it is 

0.3162K 2 
e	 = 1 − = . (19)∞ 

2 + 0.3162K 2 + 0.3162K 

Table 1 illustrates the trends described above. The feedback gain K is specified by 
changing the resistance R2. In practice, one might use a variable resistor (“trimmer”) 
to make feedback gain adjustments more conveniently. 

It’s worthwhile to question the physical origin of the steady–state error (19) in 
the velocity feedback system. Recall that the output of the differential amplifier, as 
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R1 [kΩ] R2 [kΩ] K τ [sec] v∞ [m/ (sec · V)] e∞ (%) 
1 1 1 0.4317 0.1365 86.35 
1 2 2 0.3799 0.2402 75.98 
1 5 5 0.2793 0.4415 55.85 
1 10 10 0.1937 0.6126 38.74 
1 100 100 0.0297 0.9405 5.95 

Table 1: Time constant, steady–state velocity and steady–state error for the velocity 
control system. 

function of the voltages applied to the input terminals is given by (16). This can be 
rewritten as 

R2
Vs(s) = E(s), (20)

R1 

where E(s) represents the Laplace transform of the “error signal” (see Figure b on 
cover page.) In other words, the motor is driven by a voltage proportional to the 
difference between the reference voltage and the (transduced) velocity. In response to 
vs, the DC motor draws as much current as necessary from the op–amp to drive the 
rotational/translational loads. 

Now consider a motor that is initially at rest and the sequence of events after Vref 

is turned on: Since v(t = 0) = 0, the error signal at the differential amplifier’s input 
is initially equal to Vref. This produces a voltage vs and, in turn, provides current 
to the motor to overcome the load’s inertia and friction and start rotating the shaft. 
The shaft rotation causes the rack to translate (via the pinion gear coupling) and, 
since v(t) is now increasing, the feedback signal Vtach at the op–amp’s “−” terminal 
begins to increase as well. This causes the error signal to decrease and, in turn, vs 

decreases as well. This sequence continues until the load has reached steady–state, 
which in this case we can also call terminal velocity. At steady state, there is no 
acceleration, i.e. the terms ω̇, v̇ in (3), (5) vanish. However, from these two equations 
we can see that some residual torque is still required to overcome the rotational and 
translational friction in the system. The difference between the voltages at the input 
terminals of the differential amplifier must, therefore, remain equal to e to provide the ∞
requisite voltage (and current) to the DC motor so that it can keep the shaft rotating 
at constant velocity despite the friction. The unfortunate outcome is that the output 
velocity never reaches the numerical value of Vref; this is, of course, undesirable, but 
it is an unavoidable property of the feedback topology that we chose here. We’ll learn 
later that other feedback topologies, e.g. the “PID controller” circuit that we saw in 
Lecture 10, can correct this problem. 

The physical description of the previous paragraph explains the origin of the terms 
“reference voltage” and “error signal.” Moreover, we can also understand why the 
steady–state error diminishes as the feedback gain K grows larger: the voltage vs 

applied to the motor is K times the error signal; therefore, if K increases, then a 
smaller error signal can drive the DC motor with a sufficiently large voltage vs to 
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Figure 1: Unit step response of the velocity control system. 

overcome friction at steady state. The terminal velocity would then inch up to a 
numerical value closer to Vref. 

To conclude, we have plotted the unit step response of the system in open–loop 
configuration and feedback (closed–loop) configuration side–by–side for comparison in 
Figure 1. The figure also includes the evolution of the current through the DC motor 
and the error signal applied between the op–amp’s terminals. We can verify the trends 
described above, especially the time constant and steady state error of the closed–loop 
step response as we vary the feedback gain K. 

We might wish, ideally, to have K →∞ because in this limit the steady–state error 
is eliminated and, moreover, the system’s response is speediest. In practice, this is not 
possible or even desirable because of several reasons: 

a) We can see from (11) that the current through the DC motor includes a term 
proportional to the derivative of the translational velocity. If the velocity changes 
very fast, its derivative becomes large, which means that the motor must draw 
a large current from the op–amp. Even though in our ideal model the op–amp 
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can produce as much current as we’d like, real life op–amps can produce a limited 
maximum current. If we select the feedback gain K to be large enough to require 
the DC motor to draw more than the op–amp’s available maximum current, the 
op–amp will saturate. This is a nonlinear effect that we’ve neglected in our 
analysis. 

b) We recall from Lectures 5, 6 that the DC motor has a finite inductance L which 
we can neglect if the system’s response is slow enough. If we select the feedback 
gain K to be large enough to require a response of time constant comparable 
to the time constant due to L, then L will limit the response speed. This is a 
linear effect that we’ve neglected in our analysis. We can easily enough modify 
our model to include L if we wish to model fast responses, but we would then 
obtain a higher–order system. 

c) There are other phenomena that we’ve neglected: e.g., the internal gain and input 
resistance of the op–amp were both assumed to be infinite in the differential 
amplifier model; the DC motor itself has nonlinearities (e.g. dead zone), etc. 
Finally, not to mince words, we must always be mindful that if we drive too 
much current through an op–amp or DC motor, we might burn either or both of 
them!! 

The above caveats do not reduce the value of our simplified model; they just serve as a 
warning that simple models, powerful as they can be with the intuitive understanding 
of the physical world that they provide us with, they are limited by their inherent 
assumptions. A good Engineer must know which is the minimum complexity required 
to deal effectively with each given situation, and use just that amount of complexity. 
(This rule is known as “Occam’s razor.”) 

The last question (and perhaps the most relevant one) is: why use feedback at all? 
From our analysis above, it is clear that by using feedback we can get the system to 
behave in ways that its natural (open–loop) physics do not allow, e.g. we can get a 
faster response than the open–loop system. It is also convenient that we can set the 
desired output (velocity) as an external reference voltage Vref and then have the system 
race to match the output to our reference input. In many cases, the most important 
reason for using feedback is disturbance cancelation. We have not yet developed the 
necessary tools to analyze this effect; but it is important to emphasize even now that 
if the system is subject to a disturbance beyond our control, e.g. electrical noise, 
mechanical vibrations, etc. which might cause the output to deviate from the desired 
value Vref, then the feedback loop will act to cancel that disturbance. 

A car’s cruise control option is a good example of feedback action canceling distur
bances; if you have ever used cruise control, you probably know already its utility and 
its limitations (e.g., if the car needs to climb a steep hill while on cruise control, the 
engine might not be able to provide enough torque, and the speed then drops or the 
engine might even stall.) We will examine in detail disturbance cancelation in the near 
future. 
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