So far

- First-order systems (linear)
- Second-order systems (linear)

Today

- Higher-order systems (linear)
- when can we approximate as second-order?
- Nonlinear systems
- Review of cases we've seen
- Linearization
- Example: pendulum
- DC motor nonlinearities
- Example: load connected with gears; saturation, dead zone, backlash

The effect of multiple poles

$$
\begin{aligned}
C(s)= & \frac{A}{s}+ \\
& \frac{B\left(s+\zeta \omega_{n}\right)+C \omega_{d}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}}+ \\
& \frac{D}{s+\alpha_{r}} .
\end{aligned}
$$

Images removed due to copyright restrictions.
Please see: Fig. 4.23 and 4.24 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Linear vs Nonlinear (revisited)

Linear vs Nonlinear (revisited)

Linear system: $f(x(t))=k x(t)$
Consider linear combination of inputs

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t)
$$

Then output is same linear combination of outputs

Nonlinear system: $f(x(t)) \neq k x(t)$ e.g., $f(x(t))=k \sqrt{x(t)}$.

Consider same linear combination of inputs

$$
a_{1} x_{1}(t)+a_{2} x_{2}(t)
$$

Then output is not the same linear combination of outputs
$f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right)=k\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right)=$
$a_{1}\left(k x_{1}(t)\right)+a_{2}\left(k x_{2}(t)\right)=a_{1} f\left(x_{1}(t)\right)+a_{2} f\left(x_{2}(t)\right)$.

$$
\begin{gathered}
f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right)=k \sqrt{\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right)} \neq \\
a_{1} \sqrt{k x_{1}(t)}+a_{2} \sqrt{k x_{2}(t)}=a_{1} f\left(x_{1}(t)\right)+a_{2} f\left(x_{2}(t)\right)
\end{gathered}
$$

Linearization

Figure by MIT OpenCourseWare.

$$
f(x) \approx f\left(x_{0}\right)+m_{a}\left(x-x_{0}\right)
$$

where

$$
m_{a}=\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=x_{0}}
$$

Images removed due to copyright restrictions.
Please see Fig. 2.48 and 4.24 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Example

Linearize $f(x)=5 \cos x$ near $x=\pi / 2$. Answer: We have $f(\pi / 2)=0, m_{a}=-5$, so

$$
f(x) \approx-5\left(x-\frac{\pi}{2}\right) \quad(x \approx \pi / 2)
$$

Linearizing systems : the pendulum

Figure by MIT OpenCourseWare.
The equation of motion is found as

$$
J \ddot{\theta}+\frac{M g L}{2} \sin \theta=T . \quad \text { (We cannot Laplace transform!) }
$$

For small angles $\theta \approx 0$, we have

$$
\left.\sin \theta \approx \frac{\mathrm{d} \sin \theta}{\mathrm{~d} \theta}\right|_{\theta=0} \times \theta=\left.\cos \theta\right|_{\theta=0} \times \theta=1 \times \theta=\theta
$$

Therefore, the linearized equation of motion is

$$
J \ddot{\theta}+\frac{M g L}{2} \theta=T \Rightarrow J s^{2} \Theta(s)+\frac{M g L}{2} \Theta(s)=T(s) .
$$

Some common nonlinearities

Case study: motor with gear load

Figure by MIT OpenCourseWare.
Motor loading

- Dead zone

Images removed due to copyright restrictions.
Please see Fig. 2.46 in: Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Figures by MIT OpenCourseWare.
Motor circuit
$K_{m}=0.5 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{A}$
$K_{b}=0.5 \mathrm{~V} \cdot \mathrm{sec} / \mathrm{rad}$
$K_{b}=0.5 \mathrm{~V} \cdot \mathrm{sec} / \mathrm{rad}$

- Saturation

Saturation

Images removed due to copyright restrictions.

Please see Fig. 4.29 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

$$
\begin{gathered}
\text { System TF } \\
\frac{0.2083}{s+1.71} \\
\text { Input Step function } \\
u(t) \leftrightarrow \frac{1}{s}
\end{gathered}
$$

Dead zone

Images removed due to copyright restrictions.

Please see: Fig. 4.30 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

$$
\begin{gathered}
\text { System TF } \\
\frac{0.2083}{s(s+1.71)} \\
\text { Input Sinusoid } \\
5 \sin (2 \pi t) u(t)
\end{gathered}
$$

Backlash

Images removed due to copyright restrictions.

Please see: Fig. 4.31 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

$$
\begin{gathered}
\text { System TF } \\
\frac{0.2083}{s(s+1.71)} \\
\text { Input Sinusoid } \\
5 \sin (2 \pi t) u(t)
\end{gathered}
$$

Case study solution 11: electro-mechanical model

Motor circuit

KVL around the DC motor circuit loop (neglecting the inductance L_{a}) yields

$$
R_{a} I_{a}(s)+V_{b}(s)=E_{a}(s)
$$

Substituting I_{a}, V_{b} from the motor equations,

$$
R_{a} \frac{T_{m}(s)}{K_{m}}+K_{b} s \Theta_{m}(s)=E_{a}(s)
$$

Recall DC motor equations (in the Laplace domain)

$$
\begin{aligned}
T_{m}(s) & =K_{m} I_{a}(s) \\
V_{b}(s) & =K_{b} \Omega_{m}(s)
\end{aligned}
$$

Since $\omega_{m}(t)=\dot{\theta_{m}}(t) \Leftrightarrow \Omega_{m}(s)=s \Theta_{m}(s)$, we can rewrite the second motor equation as

$$
V_{b}(s)=s K_{b} \Theta_{m}(s)
$$

To find an equation relating the source $E_{a}(s)$ to the motor output angle $\Theta_{m}(s)$,
we must relate the source $E_{a}(s)$ to the torque $T_{m}(s)$, and the torque $T_{m}(s)$ to the angle $\Theta_{m}(s)$.

Assume an equivalent load of inertia J_{m} and damping D_{m}, subject to the motor's torque $T_{m}(s)$.

Torque balance on this system yields

$$
\begin{aligned}
T_{m}(t) & =J_{m} \ddot{\theta_{m}}(t)+D_{m} \dot{\theta}_{m}(t) \Rightarrow \\
T_{m}(s) & =J_{m} s^{2} \Theta_{m}(s)+D_{m} s \Theta_{m}(s)
\end{aligned}
$$

Substituting into the electrical equation from above,

$$
\left[\frac{R_{a}}{K_{m}}\left(J_{m} s^{2}+D_{m} s\right)+K_{b} s\right] \Theta_{m}(s)=E_{a}(s)
$$

Case study solution 12: load model

Motor loaded with gears
$N_{1}: N_{2}=25: 250$
$J_{a}=0.02 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ Recalling the gear loading relationships from lecture 2 , $J_{L}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Figures by MIT OpenCourseWare.

The last equation from the previous page can be rearranged and rewritten as a transfer function

$$
\frac{\Theta_{m}(s)}{E_{a}(s)}=\frac{\frac{K_{t}}{R_{a} J_{m}}}{s\left[s+\frac{1}{J_{m}}\left(D_{m}+\frac{K_{m} K_{b}}{R_{a}}\right)\right]}
$$

We must now relate the equivalent loads J_{m}, D_{m} to the actual load that consists of the motor's own armature inertia J_{a} and compliance D_{a}, as well as the load's inertia J_{L} and compliance D_{L}. The load is connected to the motor via a gear-pair of ratio $N_{1}: N_{2}$.

$$
J_{m}=J_{a}+\left(\frac{N_{1}}{N_{2}}\right)^{2} J_{L} ; \quad D_{m}=D_{a}+\left(\frac{N_{1}}{N_{2}}\right)^{2} D_{L}
$$

Also note that the load shaft angle is related to the motor shaft angle via

$$
\Theta_{o}(s)=\left(\frac{N_{1}}{N_{2}}\right) \Theta_{m}(s) .
$$

After substituting the numerical values, we find that the transfer function is of the form

$$
\frac{\Theta_{m}(s)}{E_{a}(s)}=\frac{K}{s(s+p)}=\frac{0.2083}{s(s+1.71)}
$$

where the system gain $K=0.2083 \mathrm{rad} /\left(\mathrm{V} \cdot \mathrm{sec}^{2}\right)$ and the system pole $p=-1.71 \mathrm{~Hz}$.
The extra s in the transfer functions' denominator indicates that the system includes an integrator.

We can also obtain the TF for $\Omega_{o}(s)=s \Theta_{o}(s)$

$$
\frac{\Omega_{m}(s)}{E_{a}(s)}=\frac{K}{s+p}=\frac{0.2083}{s+1.71}
$$

Case study solution 13: torque-speed curve

Figures by MIT OpenCourseWare.

Images removed due to copyright restrictions.
Please see: Fig. 2.38 in Nise, Norman S.
Control Systems Engineering. 4th ed.
Hoboken, NJ: John Wiley, 2004.

Recall the relationship we obtained from KVL and the motor equations,

$$
\begin{aligned}
\frac{R_{a}}{K_{m}} T_{m}(s)+K_{b} s \Theta_{m}(s) & =E_{a}(s) \Rightarrow \\
\frac{R_{a}}{K_{m}} T_{m}(s)+K_{b} \Omega_{m}(s) & =E_{a}(s)
\end{aligned}
$$

Inverse Laplace-transforming,

$$
\begin{gathered}
\frac{R_{a}}{K_{m}} T_{m}(t)+K_{b} \omega(t)=e_{a}(t) \Rightarrow \\
T_{m}=-\frac{K_{b} K_{m}}{R_{a}} \omega_{m}+\frac{K_{m}}{R_{a}} e_{a}
\end{gathered}
$$

This relationship on the $\omega_{m}-T_{m}$ plane represents a straight line called torque-speed curve, with slope $-K_{b} K_{m} / R_{a}$ and offset K_{m} / R_{a}.

$$
\begin{gathered}
\omega_{m}=0 \Leftrightarrow T_{\text {stall }}=\frac{K_{m}}{R_{a}} e_{a} \quad \text { Stall torque; } \\
T_{m}=0 \Leftrightarrow \omega_{n o-\text { load }}=\frac{e_{a}}{K_{b}} \quad \text { No-load speed. }
\end{gathered}
$$

