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Review: step response of 1st order systems

Figure 4.3
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Review: poles, zeros, and the forced/natural responses
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Goals for today

• Second-order systems response
– types of 2nd-order systems

• overdamped
• underdamped
• undamped
• critically damped

– transient behavior of overdamped 2nd-order systems
– transient behavior of underdamped 2nd-order systems
– DC motor with non-negligible impedance

• Next lecture (Friday):
– examples of modeling & transient calculations for 

electro-mechanical 2nd order systems
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DC motor system with non-negligible inductance
Recall combined equations of motion

LsI(s) +RI(s) +KvΩ(s) = Vs(s)

JsΩ(s) + bΩ(s) = KmI(s)

)
⇒
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¶
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¶¸
Ω(s) =

Km

R
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(Js+ b)Ω(s) = KmI(s)

Including the DC motor’s inductance, we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Quadratic polynomial denominator
Second—order system
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Step response of 2nd order system – large R/L
L = 0.1H, Kv = 6V · sec, Km = 6N ·m/A, J = 2kg ·m2,

R = 6Ω, b = 4kg ·m2 ·Hz; vs(t) = 30u(t) V.Overdamped
response

↔
dissipation >

energy storage
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Comparison of 1st order and 2nd order overdamped
1st order

(L≈0)
2nd order
(L=0.1H)
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Step response of 2nd order system – small R/L
L = 1.0H, Kv = 6V · sec, Km = 6N ·m/A, J = 2kg ·m2,

R = 6Ω, b = 4kg ·m2 ·Hz; vs(t) = 30u(t) V.Underdamped
response

↔
dissipation <

energy storage overshoot
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Comparison of 1st order and 2nd order underdamped
1st order

(L≈0)
2nd order
(L=1.0H)

overshootNO overshoot
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Overdamped DC motor: derivation of the step response
Using the numerical values L = 0.1H, Kv = 6V · sec, Km = 6N · m/A, J =
2kg ·m2, R = 6Ω, b = 4kg ·m2 ·Hz we find

Km

LJ
= 30

rad

sec ·V
;

b

J
+
R

L
= 62rad/sec;

bR +KmKv

LJ
= 300 (rad/sec)

2
.

Therefore, the transfer function for the angular velocity is

Ω(s)

Vs(s)
=

30

s2 + 62s+ 300
.

We find that the denominator has two real roots,

s1 = −5.290Hz, s2 = −56.71Hz ⇒
Ω(s)

Vs(s)
=

30

(s+ 5.290)(s+ 56.71)
.

To compute the step response we substitute the Laplace transform of the voltage
source Vs(s) = 30/s and carry out the partial fraction expansion:

Ω(s) =
900

s(s+ 5.290)(s+ 56.71)
=
3

s
−

3.3

s+ 5.290
+

0.3

s+ 56.71
⇒

ω(t) =
£
3− 3.3e−5.29t + 0.3e−56.71t

¤
u(t).

This is the function whose plot we analyzed in slides #5—8.

A 2nd—order system is overdamped
if the transfer function denominator

has two real roots.
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Overdamped DC motor in the s-domain
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Undamped DC motor: no dissipation
Consider the opposite extreme where the dissipation due to both the resistor and
bearings friction is negligible, i.e. R = 0 and b = 0. Using the same remaining
numerical values L = 0.1H, Kv = 6V · sec, Km = 6N ·m/A, J = 2kg · m2, we
find

Km

LJ
= 30

rad

sec ·V
;

b

J
+
R

L
= 0;

bR +KmKv

LJ
= 180 (rad/sec)

2
.

Therefore, the transfer function for the angular velocity is

Ω(s)

Vs(s)
=

30

s2 + 180
.

The denominator has a conjugate pair of two imaginary roots,

s1,2 = ±j13.42Hz ⇒
Ω(s)

Vs(s)
=

30

(s+ j13.42)(s− j13.42)
.

Again, the step response is found by partial fraction expansion:

Ω(s) =
900

s(s+ j13.42)(s− j13.42)
=
5

s
−

5s

s2 + (13.42)
2 ⇒

ω(t) = [5− 5 cos (13.42t)]u(t).

A 2nd—order system is undamped
if the transfer function denominator has a
conjugate pair of two imaginary roots.
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Undamped DC motor in the s-domain
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Natural frequency ωn = 13.42rad/sec.
Period T = 2π/ωn = 4.24sec.
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Underdamped DC motor: small dissipation
Finally, let us return to what we previously labelled as “underdamped” case,
i.e. L = 1.0H, Kv = 6V · sec, Km = 6N · m/A, J = 2kg · m2, R = 6Ω,
b = 4kg ·m2 ·Hz. The values of L, R are such that the dissipation in the system
is negligible compared to the energy storage capacity. We then find

Km

LJ
= 3

rad

sec · V
;

b

J
+
R

L
= 8rad/sec;

bR+KmKv

LJ
= 30 (rad/sec)2 .

Therefore, the transfer function for the angular velocity is

Ω(s)

Vs(s)
=

30

s2 + 8s+ 30
.

This denominator has a conjugate pair of two complex roots,

s1,2 = −4± j3.74 rad/sec ⇒
Ω(s)

Vs(s)
=

30

(s+ 4 + j3.74)(s+ 4− j3.74)
.

We will now develop the partial fraction expansion method for this case, aiming
to find the step response:

Ω(s) =
90

s(s+ 4 + j3.74)(s+ 4− j3.74)
=

90

s(s2 + 8s+ 30)
= 90

µ
K1

s
+

K2s+K3

s2 + 8s+ 30

¶
.

A 2nd—order system is underdamped
if the transfer function denominator has a
conjugate pair of two complex roots.
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Underdamped DC motor: small dissipation
Using the familiar partial fraction method, we can find K1 = 1/30, K2 = −1/30,
K3 = −8/30, therefore

Ω(s) = 3

µ
1

s
−

s+ 8

s2 + 8s+ 30

¶
.

To find the inverse Laplace transform, we rewrite the denominator as a complete
square plus a constant, and break down the numerator into the sum of the
same factor that appeared in the denominator’s complete square plus another
constant:

Ω(s) = 3

Ã
1

s
−

(s+ 4) + 4

(s+ 4)2 + 14

!
.

If the complete square instead of (s+4)2 were of the form s2, the inverse Laplace
transform would have followed easily from Nise Table 2.1:

L−1
·
s+ 4

s2 + 14

¸
= L−1

"
s+ 4

s2 + (3.74)
2

#
= cos (3.74t) + 4 sin (3.74t) .

To take the extra factor of 4 into account, we must use yet another property of
Laplace transforms, which we have not seen until now:

L
£
e−atf(t)

¤
= F (s+ a). (Nise Table 2.2, #4).
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Underdamped DC motor: small dissipation
We apply this “frequency shift” property as follows:

L−1
"

s+ 4

s2 + (3.74)
2

#
= cos (3.74t) + 4 sin (3.74t)⇒

⇒ L−1
"

(s+ 4) + 4

(s+ 4)2 + (3.74)2

#
= e−4t [cos (3.74t) + 4 sin (3.74t)] .

Combining all of the above results, we can finally compute the step response for
the angular velocity of the DC motor as

ω(t) =

½
3− 3

³
e−4t [cos (3.74t) + 4 sin (3.74t)]

´¾
u(t).

With a little bit of trigonometry, which we leave to you to do as exercise, we
can rewrite the step response as

ω(t) =

½
3− 4.39e−4t cos (3.74t− 0.82)

¾
u(t).

So the step response of the 2nd—order underdamped system is characterized by
a phase—shifted sinusoid enveloped by an exponential decay.

This step response was analyzed in slides #9—10 of today’s notes.
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What the real and imaginary parts of the poles do

Note: the underdamped oscillation frequency is not the same as 
Figure 4.8 the natural frequency!

Exponential decay generated by real
part of complex pole pair

Sinusoidal oscillation generated by 
imaginary part of complex pole pair

c(t)

t Damping ratio

1
ζ ≡

Undamped (“natural”) period

2π
.

Time constant of exponential decay

Figure by MIT OpenCourseWare.
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Underdamped DC motor in the s-domain
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The general 2nd order system

We can write the transfer function of the general 2nd—order system with unit
steady state response as follows:

ω2n
s2 + 2ζωns+ ω2n

, where

• ωn is the system’s natural frequency, and

• ζ is the system’s damping ratio.

The natural frequency indicates the oscillation frequency of the undamped
(“natural”) system, i.e. the system with energy storage elements only and
without any dissipative elements. The damping ratio denotes the relative con-
tribution to the system dynamics by energy storage elements and dissipative
elements. Recall,

ζ ≡
1

2π

Undamped (“natural”) period

Time constant of exponential decay
.

Depending on the damping ratio ζ, the system response is

• undamped if ζ = 0;

• underdamped if 0 < ζ < 1;

• critically damped if ζ = 1;

• overdamped if ζ > 1.
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The general 2nd order system
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Figure by MIT OpenCourseWare.
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The general 2nd order system

Nise Figure 4.11

Images removed due to copyright restrictions.

Please see: Fig. 4.11 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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The underdamped 2nd order system
ω2n

(s2 + 2ζωns+ ω2n)
, 0 < ζ < 1

The step response’s Laplace transform is

1

s
×

ωn
s2 + 2ζωns+ ω2n

=
K1

s
+

K2s+K3

s2 + 2ζωns+ ω2n
.

We find

K1 =
1

ω2n
, K2 = −

1

ω2n
, K3 =

2ζ

ωn

Substituting and applying the same method of completing squares that we did
in the numerical example of the DC motor’s angular velocity response, we can
rewrite the laplace transform of the step response as

1

s
−

(s+ ζωn) +
ζp
1− ζ2

ωn
p
1− ζ2

(s+ ζωn)
2
+ ω2n

¡
1− ζ2

¢ .

Using the frequency shifting property of Laplace transforms we finally obtain
the step response in the time domain as

1− e−ζωnt
"
cos

³
ωn
p
1− ζ2t

´
+

ζp
1− ζ2

sin
³
ωn
p
1− ζ2t

´#
.
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The underdamped 2nd order system
ω2n , 0 < ζ < 1

(s2 + 2ζωns+ ω2n)
Finally, using some additional trigonometry and the definitions

σd = ζωn, ωd = ωn
p ζ
1− ζ2, tanφ = p

1− ζ2

we can rewrite the step response as

1
1 e−σdt cos (ωdt φ)− p

1− ζ2
× × −

The definitions above can be re—written

σd
ζ =

Figure 4.10

,
ωnp ω

1−
d

ζ2 = ,
ωn

ω
⇒

d
tan θ = =

σd

p
1− ζ2

.
ζ

X

X

ωn

θ

s-plane

− ζ ωn = − σd 

+ jωn   1 − ζ2 = jωd

− jωn   1 − ζ2 = −jωd

jω

σ

Figure by MIT OpenCourseWare.
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The underdamped 2nd order system
ω2n

(s2 + 2ζωns+ ω2n)
, 0 < ζ < 1

Finally, using some additional trigonometry and the definitions

σd = ζωn, ωd = ωn
p
1− ζ2, tanφ =

ζp
1− ζ2

we can rewrite the step response as

1 −
1p
1− ζ2

× e−σdt × cos (ωdt− φ)

Figure 4.10

forced response,
sets steady state

Exponential decay generated by real
part of complex pole pair

Sinusoidal oscillation generated by 
imaginary part of complex pole pair

(tc )

Figure by MIT OpenCourseWare. t
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Transients in the underdamped 2nd order system
Peak time

π
Tp =

ωn
p .
1− ζ2

Percent overshoot (%OS)

%OS = exp

Ã
ζπ

−p 100
1− ζ2

!
×

⇔ ζ =
−ln (%OS/100)q
π2 + ln2 (%OS/100)

Settling time
(to within ±2% of steady state)

ln
Ts = −

³
0.02

p
1− ζ2

´
4

ζωn
≈ .

ζωn

(approximation valid for
0 < ζ < 0.9.)

Figure 4.14

Tr Tp Ts
t

c(t)

0.1cfinal

0.9cfinal

0.98cfinal

1.02cfinal

cmax

c final

Figure by MIT OpenCourseWare.
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Transient qualities from pole location in the s-plane

Nise Figure 4.19

Recall

ζ =
σd
ωn
,

p
1− ζ2 =

ωd
ωn
,

⇒ tan θ =
ωd
σd
=

p
1− ζ2

ζ
.

Images removed due to copyright restrictions.

Please see: Fig. 4.19 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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