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Review: step response of 1st order systems we’ve seen

• Inertia with bearings (viscous friction)

• RC circuit (charging of a capacitor)

• DC motor with inertia load, bearings and negligible inductance
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implying the result holds for t > 0 only.
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Goals for today

• First-order systems response
– pole, zero definitions
– the significance of poles and zeros:

from s-domain representation to transient characteristics
• DC motor dynamics:

– angular velocity (1st order: 1 pole)
– current (1st order: 1 pole, 1 zero)

• Two new properties of the Laplace transform:
– final value theorem
– initial value theorem

• Next two lectures:
– 2nd order systems
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Current dynamics in DC motor system
Recall combined equations of motion

LsI(s) +RI(s) +KvΩ(s) = Vs(s)

JsΩ(s) + bΩ(s) = KmI(s)
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Neglecting the DC motor’s inductance (i.e., assuming L/R ≈ 0), we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Poles and zeros in the s-plane
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DC motor step response: numerical example

L ≈ 0, R = 6Ω, Kv = 6V · sec,
Km = 6N ·m/A, J = 2kg ·m2, b = 4kg ·m2 ·Hz.

We will compute the system’s response
(both angular velocity and current)
to the step input vs(t) = 30u(t) V.

Substituting the numerical values into the system TF,

we find
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whereas the Laplace transform of the input is
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DC motor step response: numerical example

L ≈ 0, R = 6Ω, Kv = 6V · sec,
Km = 6N ·m/A, J = 2kg ·m2, b = 4kg ·m2 ·Hz.

We will compute the system’s response
(both angular velocity and current)
to the step input vs(t) = 30u(t) V.

Substituting the numerical values into the system TF,

we find
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DC motor system in the s-plane
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DC motor step response (angular velocity)

Image removed due to copyright restrictions.

Please see: Fig. 4.1 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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DC motor step response (current)

Image removed due to copyright restrictions.

Please see: Fig. 4.1 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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1st order system response from s-plane representation

• Pole at –α generates response
e–αt (exponentially decreasing if 
pole on the right half-plane;
increasing if on the left half-plane)

• Pole at zero generates step 
function

• Pole in the input function generates forced response
• Pole in the transfer function generates natural response
• Zero in the transfer function does not alter the speed of settling to 

steady state (i.e. the time constant) but it does alter the relative 
amplitudes of the forced and natural responses
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1st order system: transient response properties

Figure 4.3

Step response
in the s—domain
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Figure by MIT OpenCourseWare.
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DC motor step responses

ω(t) = 3
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The Final Value theorem: steady-state
We will now learn two additional properties of the Laplace transform, which we
will quote without proof. Let F (s) denote the Laplace transform of the function
f(t). The first property is the

Final Value theorem:

f(∞) = lims→0 sF (s);

Let us see how this applies to the step response of a general 1st—order system
with a pole at −a and without a zero (e.g., the angular velocity response of the
DC motor.) We select the system gain such that the steady—state will equal 1.
The step response in the s—domain then is

F1(s) =
a

s(s+ a)
=
1

s
−

1

s+ a
; also, sF1(s) =

a

s+ a
.

Using the partial fraction expansion above, we find the time domain step re-
sponse as

f1(t) =
¡
1− e−at

¢
u(t)⇒ f1(∞) = 1 (as advertised.)

Applying the final value theorem, we find, consistently,

f1(∞) = lims→0 sF1(s) = lims→0
a

s+ a
= 1.
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The Initial Value theorem: initial slope
The second property of the Laplace transform is the

Initial Value theorem

f(0+) = lims→∞ sF (s).

Let us use this property to compute the initial slope of the step response, i.e.
the value of the derivative of the step response at t = 0+ for the same general
1st—order system with steady state equal to unity, a pole at −a and without a
zero. Since we are interested in the derivative of f(t), the Laplace transform of
interest is

H1(s) = L

·
df1(t)

dt

¸
= sF1(s)⇒ sH1(s) = s

2F1(s) =
as

s+ a
.

Applying the final value theorem,

df1
dt
(0+) = lims→∞

as

s+ a
= lims→∞

a

1 + a/s
= a.

Again, this is consistent with the result we get directly from the time domain:

f1(t) =
¡
1− e−at

¢
⇒
df1
dt
(t) = − (−a) e−at ⇒

df1
dt
(0+) = a.
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Initial and final value of 1st-order system with a zero
We now consider the same 1st—order system with unity steady state, a pole at
−a, but we also add a zero at −z. In that case, the Laplace transforms of the
step response and its derivative are

F2(s) = a
s+ z

s(s+ a)
=
z

s
+
a− z

s + a
; sF2(s) = a

s+ z

s+ a
; s2F2(s) = a

s(s+ z)

s+ a
.

We can readily see that

f2(∞) = lims→0sF2(s) = z; f2(0+) = lims→∞sF2(s) = a;
df2
dt
(0+) = lims→∞s

2F2(s) =∞.

You should verify that these results are consistent with the time—domain solution
for this system.

We can see that the effects of the zero −z on the 1st—order system are (in
comparison to a system with the same pole at −a but without the zero)

• amplify the steady—state response by z;

• raise the initial value from zero to A;

• raise the initial slope to infinity.

The infinite initial slope is non—physical; in the case of the DC motor, it occurs
because we neglected the inductance L.
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How the zero acts
Comparing the system response F1(s) (without a zero) and the system response
F2(s) (with a zero at −z), we can see that

F2(s) = (s+ z)F1(s) = sF1(s) + zF1(s)⇒

f2(t) =
df1(t)

dt
+ zf1(t).

That is, the zero results in derivative action and amplification.
Both of these results are qualitatively consistent with our observations from the
previous page.

derivative action
amplification

Note: In this case,
there is an additional

amplification factor of 1/3
from ω(t) to i(t).

DC motor
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