Summary from previous lecture

• Electrical dynamical variables and elements

Charge q(t), Q(s). Current $i(t) = \dot{q}(t)$, I(s) = sQ(s). Voltage v(t), V(s) = Z(s)I(s).

Resistor $v(t) = Ri(t), Z_R(s) = R.$

Capacitor $i(t) = C\dot{v}(t), Z_C(s) = 1/Cs.$

Inductor v(t) = L di(t)/dt, $Z_L(s) = Ls$.

Capacitor

Inductor

Figure by MIT OpenCourseWare.

 Z_1

Op–Amp in feedback configuration:

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}.$$

• Electrical networks

2.004 Fall '07

Lecture 0

Lecture 05 - Friday, Sept. 14

Goals for today

- The DC motor:
 - basic physics & modeling,
 - equation of motion,
 - transfer function.
- Next week:
 - Properties of 1st and 2nd order systems
 - Working in the *s*-domain: poles, zeros, and their significance

Power dissipation in electrical systems

Instantaneous power dissipation

$$P(t) = i(t) \cdot v(t).$$

Unit of power: 1 Watt=1 A \cdot 1 V. <u>NOTE:</u> $P(s) \neq I(s) \cdot V(s)$. Why?

DC Motor as a system

Transducer:

Converts energy from one domain (electrical) to another (mechanical)

Physical laws applicable to the DC motor

Lorentz law:

magnetic field applies force to a current (Lorentz force)

Faraday law:

moving in a magnetic field results in potential (back EMF)

 $F = (\mathbf{i} \times \mathbf{B}) \cdot l = iBl$ $(\mathbf{i} \perp \mathbf{B})$ $v_e = \mathbf{V} \times \mathbf{B} \cdot l = VBl$ $(\mathbf{V} \perp \mathbf{B})$

DC motor: principle and simplified equations of motion

multiple windings *N*: continuity of torque

DC motor: equations of motion in matrix form

multiple windings *N*: continuity of torque

$$\begin{bmatrix} v_e \\ i \end{bmatrix} = \begin{bmatrix} 2BNlr & 0 \\ 0 & \frac{1}{2BNlr} \end{bmatrix} \begin{bmatrix} \omega \\ T \end{bmatrix}$$
or
$$\begin{bmatrix} v_e \\ i \end{bmatrix} = \begin{bmatrix} K_v & 0 \\ 0 & \frac{1}{K_m} \end{bmatrix} \begin{bmatrix} \omega \\ T \end{bmatrix}$$

DC motor: why is $K_m = K_v$?

$$i, v$$

D.C. Motor
 T, ω
 $P_{in} = P_{out}$
 $i(t) * v(t) = T(t) * \omega(t)$

 $P_{in} = P_{out} \qquad \text{(power conservation)}$ $\Rightarrow iv_e = T\omega$ $\Rightarrow K_v i\omega = K_m i\omega$ $\Rightarrow K_v = K_m \qquad \text{QED.}$

DC motor with mechanical load and realistic electrical properties (*R*, *L*)

Equation of motion – Electrical

KCL:
$$v_s - v_L - v_R - v_e = 0$$

$$\Rightarrow v_s - L\frac{di}{dt} - Ri - K_v\omega = 0$$

Equation of motion – Mechanical

Torque Balance: $T = T_b + T_J$

$$\Rightarrow K_m i - b\omega = J \frac{d\omega}{dt}$$

Combined equations of motion

$$L\frac{di}{dt} + Ri + K_v\omega = v_s$$
$$J\frac{d\omega}{dt} + b\omega = K_m i$$

DC motor with mechanical load and realistic electrical properties (*R*, *L*)

Equation of motion – Electrical KCL: $V_s(s) - V_L(s) - V_R(s) - V_e(s) = 0$ $V_s(s) - LsI(s) - RI(s) - K_n\Omega(s) = 0$ **Equation of motion** – Mechanical Torque Balance: $T(s) = T_b(s) + T_J(s)$ $K_m I(s) - b\Omega(s) = Js\Omega(s)$ Combined equations of motion $LsI(s) + RI(s) + K_v\Omega(s) = V_s(s)$ $Js\Omega(s) + b\Omega(s) = K_m I(s)$ $\Rightarrow \left[(Ls+R) \left(\frac{Js+b}{K_m} \right) + K_v \right] \Omega(s) = V_s(s)$ $\Rightarrow \left[\frac{LJ}{R}s^2 + \left(\frac{Lb}{R} + J\right)s + \left(b + \frac{K_m K_v}{R}\right)\right]\Omega(s) = \frac{K_m}{R}V_s(s)$

Lecture 05 - Friday, Sept. 14

DC motor with mechanical load and realistic electrical properties (R, X)

Neglecting the impedance

Lpprox 0

$$\Rightarrow \left[Js + \left(b + \frac{K_m K_v}{R}\right)\right] \Omega(s) = \frac{K_m}{R} V_s(s)$$

This is our familiar 1^{st} -order system! If we are given step input $v_s(t) = V_0 u(t)$ \Rightarrow we already know the step response

$$\omega(t) = \frac{K_m}{R} V_0 \left(1 - \mathrm{e}^{-t/\tau} \right) u(t),$$

where now the time constant is

$$\tau = \frac{J}{\left(b + \frac{K_m K_v}{R}\right)}.$$

Review: step response of 1st order systems we've seen

• Inertia with bearings (viscous friction) Step input $T_s(t) = T_0 u(t) \Rightarrow$ Step response

$$\omega(t) = \frac{T_0}{b} \left(1 - e^{-t/\tau} \right), \quad \text{where} \quad \tau = \frac{J}{b}.$$

• RC circuit (charging of a capacitor) Step input $v_i(t) = V_0 u(t) \Rightarrow$ Step response

$$v_C(t) = V_0\left(1 - \mathrm{e}^{-t/\tau}\right), \quad \text{where} \quad \tau = RC.$$

• DC motor with inertia load, bearings and negligible inductance Step input $v_s(t) = V_0 u(t) \Rightarrow$ Step response

$$\omega(t) = \frac{K_m}{R} V_0 \left(1 - \mathrm{e}^{-t/\tau} \right),$$

where $\tau = \frac{J}{\left(b + \frac{K_m K_v}{R}\right)}.$

2.004 Fall '07

Lecture 05 - Friday, Sept. 14