Summary from previous lecture

- Electrical dynamical variables and elements

$$
\begin{gathered}
\text { Charge } q(t), Q(s) \\
\text { Current } i(t)=\dot{q}(t), I(s)=s Q(s) \\
\text { Voltage } v(t), V(s)=Z(s) I(s) \\
\text { Resistor } v(t)=R i(t), Z_{R}(s)=R . \\
\text { Capacitor } i(t)=C \dot{v}(t), Z_{C}(s)=1 / C s \\
\text { Inductor } v(t)=L \mathrm{~d} i(t) / \mathrm{d} t, Z_{L}(s)=L s
\end{gathered}
$$

Resistor

Capacitor
$-\infty 00$
Inductor

Figure by MIT OpenCourseWare.
Op-Amp in feedback configuration:

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}
$$

- Electrical networks

Voltage divider

Goals for today

- The DC motor:
- basic physics \& modeling,
- equation of motion,
- transfer function.
- Next week:
- Properties of $1^{\text {st }}$ and $2^{\text {nd }}$ order systems
- Working in the s-domain: poles, zeros, and their significance

Power dissipation in electrical systems

Instantaneous power dissipation

$$
P(t)=i(t) \cdot v(t)
$$

Unit of power: $1 \mathrm{Watt}=1 \mathrm{~A} \cdot 1 \mathrm{~V}$.
NOTE: $P(s) \neq I(s) \cdot V(s)$. Why?

DC Motor as a system

$$
\mathrm{i}(\mathrm{t}) * \mathrm{v}(\mathrm{t})=\mathrm{T}(\mathrm{t}) * \omega(\mathrm{t})
$$

Transducer:

Converts energy from one domain (electrical) to another (mechanical)

Physical laws applicable to the DC motor

Lorentz law:
magnetic field applies force to a current (Lorentz force)

$$
F=(\mathbf{i} \times \mathbf{B}) \cdot l=i B l \quad(\mathbf{i} \perp \mathbf{B}) \quad v_{e}=\mathbf{V} \times \mathbf{B} \cdot l=V B l \quad(\mathbf{V} \perp \mathbf{B})
$$

DC motor: principle and simplified equations of motion

$T=2 F r=2(i B N l) r$
$v_{e}=2 V B N l=2(\omega r) B N l$

$$
\begin{gathered}
\text { or } \\
T=K_{m} i \\
v_{e}=K_{v} \omega
\end{gathered}
$$

multiple windings N : continuity of torque

- $K_{v} \equiv 2 B N l r$ back-emf constant

DC motor: equations of motion in matrix form

$$
\left[\begin{array}{c}
v_{e} \\
i
\end{array}\right]=\left[\begin{array}{cc}
2 B N l r & 0 \\
0 & \frac{1}{2 B N l r}
\end{array}\right]\left[\begin{array}{l}
\omega \\
T
\end{array}\right]
$$

or

$$
\left[\begin{array}{c}
v_{e} \\
i
\end{array}\right]=\left[\begin{array}{cc}
K_{v} & 0 \\
0 & \frac{1}{K_{m}}
\end{array}\right]\left[\begin{array}{l}
\omega \\
T
\end{array}\right]
$$

multiple windings N : continuity of torque

DC motor: why is $K_{m}=K_{v}$?

$$
P_{\text {in }}=P_{\text {out }} \quad \text { (power conservation) }
$$

$$
\begin{aligned}
\Rightarrow i v_{e} & =T \omega \\
\Rightarrow K_{v} i \omega & =K_{m} i \omega \\
\Rightarrow K_{v} & =K_{m}
\end{aligned}
$$

QED.

DC motor with mechanical load and

realistic electrical properties (R, L)

Equation of motion - Electrical

$$
\begin{aligned}
& \text { KCL: } \quad v_{s}-v_{L}-v_{R}-v_{e}=0 \\
& \Rightarrow v_{s}-L \frac{d i}{d t}-R i-K_{v} \omega=0
\end{aligned}
$$

Equation of motion - Mechanical
Torque Balance: $\quad T=T_{b}+T_{J}$

$$
\Rightarrow K_{m} i-b \omega=J \frac{d \omega}{d t}
$$

Combined equations of motion

$$
\begin{gathered}
L \frac{d i}{d t}+R i+K_{v} \omega=v_{s} \\
J \frac{d \omega}{d t}+b \omega=K_{m} i
\end{gathered}
$$

DC motor with mechanical load and

realistic electrical properties (R, L)

DC motor with mechanical load and

realistic electrical properties (R, X)

Neglecting the impedance

$$
\begin{gathered}
L \approx 0 \\
\Rightarrow\left[J s+\left(b+\frac{K_{m} K_{v}}{R}\right)\right] \Omega(s)=\frac{K_{m}}{R} V_{s}(s) \\
\text { This is our familiar } 1^{\text {st }}-\text { order system! } \\
\text { If we are given step input } v_{s}(t)=V_{0} u(t) \\
\Rightarrow \text { we already know the step response }
\end{gathered}
$$

$$
\omega(t)=\frac{K_{m}}{R} V_{0}\left(1-\mathrm{e}^{-t / \tau}\right) u(t)
$$

where now the time constant is

$$
\tau=\frac{J}{\left(b+\frac{K_{m} K_{v}}{R}\right)}
$$

Review: step response of $1^{\text {st }}$ order systems we've seen

- Inertia with bearings (viscous friction)

Step input $T_{s}(t)=T_{0} u(t) \Rightarrow$ Step response
$\omega(t)=\frac{T_{0}}{b}\left(1-\mathrm{e}^{-t / \tau}\right), \quad$ where $\quad \tau=\frac{J}{b}$.

- RC circuit (charging of a capacitor)

Step input $v_{i}(t)=V_{0} u(t) \Rightarrow$ Step response $v_{C}(t)=V_{0}\left(1-\mathrm{e}^{-t / \tau}\right)$, where $\tau=R C$.

- DC motor with inertia load, bearings and negligible inductance

Step input $v_{s}(t)=V_{0} u(t) \Rightarrow$ Step response
$\omega(t)=\frac{K_{m}}{R} V_{0}\left(1-\mathrm{e}^{-t / \tau}\right)$,
where $\tau=\frac{J}{\left(b+\frac{K_{m} K_{v}}{R}\right)}$.

