Summary from previous lecture

• Laplace transform

$$\mathcal{L}[f(t)] \equiv F(s) = \int_{0-}^{+\infty} f(t) e^{-st} dt.$$
$$\mathcal{L}[u(t)] \equiv U(s) = \frac{1}{s}.$$
$$\mathcal{L}[e^{-at}] = \frac{1}{s+a}.$$

$$\mathcal{L}\left[\dot{f}(t)\right] = sF(s) - f(0-).$$
$$\mathcal{L}\left[\int_{0-}^{t} f(\xi)d\xi\right] = \frac{F(s)}{s}.$$

• Transfer functions and impedances

Goals for today

- Dynamical variables in electrical systems:
 - charge,
 - current,
 - voltage.
- Electrical elements:
 - resistors,
 - capacitors,
 - inductors,
 - amplifiers.
- Transfer Functions of electrical systems (networks)
- Next lecture (Friday):
 - DC motor (electro-mechanical element) model
 - DC motor Transfer Function

Electrical dynamical variables: charge, current, voltage

Electrical resistance

Collisions between the mobile charges and the material fabric (ions, generally disordered) lead to <u>energy dissipation</u> (loss). As result, energy must be expended to generate current along the resistor;
 i.e., the current flow requires application of potential across the resistor

$$v(t) = Ri(t) \Rightarrow V(s) = RI(s) \Rightarrow \frac{V(s)}{I(s)} = R \equiv Z_R$$

- The quantity $Z_R = R$ is called the <u>resistance</u> (unit: Ohms, or Ω)
- The quantity $G_R = 1/R$ is called the <u>conductance</u> (unit: Mhos or Ω^{-1})

Capacitance

- Since similar charges repel, the potential *v* is necessary to prevent the charges from flowing away from the electrodes (discharge)
- Each change in potential v(t+Δt)=v(t)+Δv results in change of the energy stored in the capacitor, in the form of charges moving to/away from the electrodes (↔ change in electric field)

Capacitance

Inductance

- Current flow *i* around a loop results in magnetic field *B* pointing normal to the loop plane. The magnetic field counteracts changes in current; therefore, to effect a change in current $i(t+\Delta t)=i(t)+\Delta i$ a potential *v* must be applied (*i.e.*, energy expended)
- Inductance *L*: $v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t}$

• in Laplace domain: $V(s) = LsI(s) \Rightarrow \frac{V(s)}{I(s)} \equiv Z_L(s) = Ls$

Summary: passive electrical elements; Sources

Table removed due to copyright restrictions.

Please see: Table 2.3 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

2.004 Fall '07

Combining electrical elements: networks

Courtesy of Prof. David Trumper. Used with permission.

Network analysis relies on two physical principles

- Kirchhoff Current Law (KCL)
 - charge conservation

- Kirchhoff Voltage Law (KVL)
 - energy conservation

Impedances in series and in parallel

Impedances in series

KCL: $I_1 = I_2 \equiv I$. KVL: $V = V_1 + V_2$. From definition of impedances:

$$Z_1 = \frac{V_1}{I_1}; \qquad Z_2 = \frac{V_2}{I_2}.$$

Therefore, equivalent circuit has

Impedances in parallel KCL: $I = I_1 + I_2$. KVL: $V_1 + V_2 \equiv V$. From definition of impedances:

$$Z_1 = \frac{V_1}{I_1}; \qquad Z_2 = \frac{V_2}{I_2}.$$

Therefore, equivalent circuit has

2.004 Fall '07

The voltage divider

Since the two impedances are in series, they combine to an equivalent impedance

$$Z = Z_1 + Z_2$$

The current flowing through the combined impedance is

$$I = \frac{V}{Z}.$$

Block diagram & Transfer Function

 V_i Z_2 V_2

Therefore, the voltage drop across
$$Z_2$$
 is

$$V_2 = Z_2 I = Z_2 \frac{V}{Z} \Rightarrow \frac{V_2}{V_i} = \frac{Z_2}{Z_1 + Z_2}.$$

Example: the RC circuit

We recognize the voltage divider configuration, with the voltage across the capacitor as output. The transfer function is obtained as

$$TF(s) = \frac{V_C(s)}{V_i(s)} = \frac{1/Cs}{R+1/Cs} = \frac{1}{1+RCs} = \frac{1}{1+\tau s},$$

where $\tau \equiv RC$. Further, we note the similarity to the transfer function of the rotational mechanical system consisting of a motor, inertia J and viscous friction coefficient b that we saw in Lecture 3. [The transfer function was $1/b(1 + \tau s)$, *i.e.* identical within a multiplicative constant, and the time constant τ was defined as J/b.] We can use the analogy to establish properties of the RC system without re-deriving them: e.g., the response to a step input $V_i = V_0 u(t)$ (step response) is

$$V_C(t) = V_0\left(1 - \mathrm{e}^{-t/ au}\right) u(t), \qquad \mathrm{where \ now} \ au = RC.$$

2.004 Fall '07

Example: RLC circuit with voltage source

Example: two-loop network

Images removed due to copyright restrictions.

Please see: Fig. 2.6 and 2.7 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

The operational amplifier (op-amp)

Figure by MIT OpenCourseWare.

(a) Generally, $v_o = A (v_2 - v_1)$, where A is the amplifier gain.

(b) When v_2 is grounded, as is often the case in practice, then $v_o = -Av_1$. (Inverting amplifier.)

(c) Often, A is large enough that we can approximate $A \to \infty$. Rather than connecting the input directly, the op-amp should then instead be used in the <u>feedback</u> configuration of Fig. (c). We have:

$$V_1 = 0; \qquad I_a = 0$$

(because V_o must remain finite) therefore

$$I_1 + I_2 = 0;$$

$$V_i - V_1 = V_i = I_1 Z_1;$$

$$V_o - V_1 = V_o = I_2 Z_2.$$

Combining, we obtain

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}.$$