Summary from previous lecture

- Laplace transform

$$
\begin{array}{rlrl}
\mathcal{L}[f(t)] \equiv & F(s)=\int_{0-}^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t . & \mathcal{L}[\dot{f}(t)]=s F(s)-f(0-) . \\
\mathcal{L}[u(t)] \equiv U(s)=\frac{1}{s} . & \mathcal{L}\left[\int_{0-}^{t} f(\xi) \mathrm{d} \xi\right]=\frac{F(s)}{s} . \\
\mathcal{L}\left[\mathrm{e}^{-a t}\right]=\frac{1}{s+a} . &
\end{array}
$$

- Transfer functions and impedances

$$
\begin{aligned}
\mathrm{TF}(s) & =\frac{X(s)}{F(s)} \\
Z(s) & =\frac{F(s)}{X(s)}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{T_{s}(s)} \xrightarrow{-\prod_{b}^{J}-\llcorner\xrightarrow{\Omega(s)}} \\
& \mathrm{TF}(s):=\frac{\Omega(s)}{T_{s}(s)}=\frac{1}{J s+b} . \\
& Z_{J}=J s ; \quad Z_{b}=b ; \quad \mathrm{TF}(s)=\frac{1}{Z_{J}+Z_{b}}
\end{aligned}
$$

Goals for today

- Dynamical variables in electrical systems:
- charge,
- current,
- voltage.
- Electrical elements:
- resistors,
- capacitors,
- inductors,
- amplifiers.
- Transfer Functions of electrical systems (networks)
- Next lecture (Friday):
- DC motor (electro-mechanical element) model
- DC motor Transfer Function

Electrical dynamical variables: charge, current, voltage

$$
\begin{array}{cc}
\text { charge } q & \text { Coulomb }[\mathrm{Cb}] \\
\text { charge flow } \equiv \text { current } i(t) & \text { Ampére }[\mathrm{A}]=[\mathrm{Cb}] /[\mathrm{sec}] \\
\text { voltage }(a k a \text { potential) } v(t) & \text { Volt }[\mathrm{V}]
\end{array}
$$

$\oplus \longmapsto \Leftarrow \ominus$
$+$
$\Leftarrow \bigodot$
$\Theta \Longrightarrow$

Electrical resistance

- Collisions between the mobile charges and the material fabric (ions, generally disordered) lead to energy dissipation (loss). As result, energy must be expended to generate current along the resistor; i.e., the current flow requires application of potential across the resistor

$$
v(t)=R i(t) \Rightarrow V(s)=R I(s) \Rightarrow \frac{V(s)}{I(s)}=R \equiv Z_{R}
$$

- The quantity $Z_{R}=R$ is called the resistance (unit: Ohms, or Ω)
- The quantity $G_{R}=1 / R$ is called the conductance (unit: Mhos or Ω^{-1})

Capacitance

- Since similar charges repel, the potential v is necessary to prevent the charges from flowing away from the electrodes (discharge)
- Each change in potential $v(t+\Delta t)=v(t)+\Delta v$ results in change of the energy stored in the capacitor, in the form of charges moving to/away from the electrodes (\leftrightarrow change in electric field)

Capacitance

- Capacitance C: $\quad q(t)=C v(t) \Rightarrow \frac{\mathrm{d} q(t)}{\mathrm{d} t} \equiv i(t)=C \frac{\mathrm{~d} v(t)}{\mathrm{d} t}$
- in Laplace domain: $I(s)=C s V(s) \Rightarrow \frac{V(s)}{I(s)} \equiv Z_{C}(s)=\frac{1}{C s}$

Inductance

- Current flow i around a loop results in magnetic field B pointing normal to the loop plane. The magnetic field counteracts changes in current; therefore, to effect a change in current $i(t+\Delta t)=i(t)+\Delta i$ a potential v must be applied (i.e., energy expended)
- Inductance $L: \quad v(t)=L \frac{\mathrm{~d} i(t)}{\mathrm{d} t}$
- in Laplace domain: $\quad V(s)=L s I(s) \Rightarrow \frac{V(s)}{I(s)} \equiv Z_{L}(s)=L s$

Summary: passive electrical elements; Sources

Table removed due to copyright restrictions.

Please see: Table 2.3 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Electrical inputs: voltage source, current source
Voltage source:
$v(t)$ independent of current through.

Current source:
$i(t)$ independent
of voltage across.

Ground:
potential reference

Combining electrical elements: networks

Courtesy of Prof. David Trumper. Used with permission.
Network analysis relies on two physical principles

- Kirchhoff Current Law (KCL)
- charge conservation

- Kirchhoff Voltage Law (KVL)
- energy conservation

Impedances in series and in parallel

From definition of impedances:

$$
Z_{1}=\frac{V_{1}}{I_{1}} ; \quad Z_{2}=\frac{V_{2}}{I_{2}}
$$

Therefore, equivalent circuit has

Impedances in parallel

$$
\begin{aligned}
& \mathrm{KCL}: I=I_{1}+I_{2} \\
& \mathrm{KVL}: V_{1}+V_{2} \equiv V .
\end{aligned}
$$

From definition of impedances:

$$
Z_{1}=\frac{V_{1}}{I_{1}} ; \quad Z_{2}=\frac{V_{2}}{I_{2}}
$$

Therefore, equivalent circuit has

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\left(\Leftrightarrow G=G_{1}+G_{2} .\right)
$$

The voltage divider

Equivalent circuit for computing the current I.

Since the two impedances are in series, they combine to an equivalent impedance

$$
Z=Z_{1}+Z_{2}
$$

The current flowing through the combined impedance is

$$
I=\frac{V}{Z}
$$

Therefore, the voltage drop across Z_{2} is

$$
V_{2}=Z_{2} I=Z_{2} \frac{V}{Z} \Rightarrow \frac{V_{2}}{V_{i}}=\frac{Z_{2}}{Z_{1}+Z_{2}}
$$

Example: the $R C$ circuit

Block diagram \& Transfer Function

We recognize the voltage divider configuration, with the voltage across the capacitor as output. The transfer function is obtained as

$$
\mathrm{TF}(s)=\frac{V_{C}(s)}{V_{i}(s)}=\frac{1 / C s}{R+1 / C s}=\frac{1}{1+R C s}=\frac{1}{1+\tau s}
$$

where $\tau \equiv R C$. Further, we note the similarity to the transfer function of the rotational mechanical system consisting of a motor, inertia J and viscous friction coefficient b that we saw in Lecture 3. [The transfer function was $1 / b(1+\tau s)$, i.e. identical within a multiplicative constant, and the time constant τ was defined as J / b.] We can use the analogy to establish properties of the $R C$ system without re-deriving them: e.g., the response to a step input $V_{i}=V_{0} u(t)$ (step response) is

$$
V_{C}(t)=V_{0}\left(1-\mathrm{e}^{-t / \tau}\right) u(t), \quad \text { where now } \tau=R C
$$

Interpretation of the $R C$ step response

Example: RLC circuit with voltage source

Figure 2.3

Figure 2.4

Example: two-loop network

Images removed due to copyright restrictions.

Please see: Fig. 2.6 and 2.7 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

The operational amplifier (op-amp)

Figure 2.10

Figure by MIT OpenCourseWare.
(a) Generally, $v_{o}=A\left(v_{2}-v_{1}\right)$, where A is the amplifier gain.
(b) When v_{2} is grounded, as is often the case in practice, then $v_{o}=-A v_{1}$.
(Inverting amplifier.)
(c) Often, A is large enough that we can approximate $A \rightarrow \infty$.
Rather than connecting the input directly, the op-amp should then instead be used in the feedback configuration of Fig. (c).

We have:

$$
V_{1}=0 ; \quad I_{a}=0
$$

(because V_{o} must remain finite) therefore

$$
\begin{gathered}
I_{1}+I_{2}=0 \\
V_{i}-V_{1}=V_{i}=I_{1} Z_{1} \\
V_{o}-V_{1}=V_{o}=I_{2} Z_{2}
\end{gathered}
$$

Combining, we obtain

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}
$$

