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Summary from previous lecture

• Laplace transform

• Transfer functions and impedances
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Goals for today

• Dynamical variables in electrical systems:
– charge,
– current,
– voltage.

• Electrical elements: 
– resistors, 
– capacitors, 
– inductors, 
– amplifiers.

• Transfer Functions of electrical systems (networks)
• Next lecture (Friday):

– DC motor (electro-mechanical element) model 
– DC motor Transfer Function
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Electrical dynamical variables: charge, current, voltage
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charge q
charge flow ≡ current i(t)
voltage (aka potential) v(t)

Coulomb [Cb]
Ampére [A]=[Cb]/[sec]

Volt [V]
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v(t) = Ri(t)⇒ V (s) = RI(s)⇒
V (s)

I(s)
= R ≡ ZR

• Collisions between the mobile charges and the material fabric (ions, 
generally disordered) lead to energy dissipation

Electrical resistance

(loss). As result, 
energy must be expended to generate current along the resistor;
i.e., the current flow requires application of potential across the 
resistor

• The quantity ZR=R is called the resistance (unit: Ohms, or Ω)
• The quantity GR=1/R is called the conductance (unit: Mhos or Ω-1)
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Capacitance

• Since similar charges repel, the potential v is necessary to prevent 
the charges from flowing away from the electrodes (discharge)

• Each change in potential v(t+Δt)=v(t)+Δv results in change of the 
energy stored in the capacitor, in the form of charges moving 
to/away from the electrodes (↔ change in electric field)
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Capacitance

• Capacitance C:

• in Laplace domain:

q(t) = Cv(t)⇒
dq(t)

dt
≡ i(t) = C

dv(t)

dt
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Inductance

• Current flow i around a loop results in magnetic field B pointing 
normal to the loop plane. The magnetic field counteracts changes in 
current; therefore, to effect a change in current i(t+Δt)=i(t)+Δi a 
potential v must be applied (i.e., energy expended)

• Inductance L:

• in Laplace domain:

v(t)

B(t)

i(t)

v(t) = L
di(t)

dt

V (s) = LsI(s)⇒
V (s)

I(s)
≡ ZL(s) = Ls

+ −
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Summary: passive electrical elements; Sources

+
−

Voltage source:
v(t) independent
of current through.

Electrical inputs: voltage source, current source

Current source:
i(t) independent
of voltage across.

Ground:
potential reference 

v(t) = 0
always

Table removed due to copyright restrictions.

Please see: Table 2.3 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.



Lecture 04 – Wednesday, Sept. 122.004 Fall ’07 

Combining electrical elements: networks

• Kirchhoff Current Law (KCL)
– charge conservation

• Kirchhoff Voltage Law (KVL)
– energy conservation

v(t) vC(t)

V (s) VC(s)

Network analysis relies on two physical principles

i1

ik

· · ·

+

−

P
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− +−+

v1

vk· · ·P
vk(t) = 0P
Vk(s) = 0P

Ik(s) = 0

-

+

Ω

Ω

Courtesy of Prof. David Trumper. Used with permission.
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Impedances in series and in parallel
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Impedances in parallel

KCL: I = I1 + I2.
KVL: V1 + V2 ≡ V .

From definition of impedances:

Z1 =
V1
I1
; Z2 =

V2
I2
.

Therefore, equivalent circuit has
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=
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Z1
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³
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Impedances in series

KCL: I1 = I2 ≡ I.
KVL: V = V1 + V2.

From definition of impedances:

Z1 =
V1
I1
; Z2 =

V2
I2
.

Therefore, equivalent circuit has

Z = Z1 + Z2
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The voltage divider
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Vi V2

Since the two impedances are in series, they combine to an equivalent impedance

Z = Z1 + Z2.

The current flowing through the combined impedance is

I =
V

Z
.

Therefore, the voltage drop across Z2 is

V2 = Z2I = Z2
V

Z
⇒
V2
Vi
=

Z2
Z1 + Z2

.

Z2
Z1 + Z2

Vi Z+
−

+

−

I

Equivalent circuit for computing the current I.

Block diagram & Transfer Function
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Example: the RC circuit
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Vi VCZ2 =
1

Cs
VC

We recognize the voltage divider configuration, with the voltage across the ca-
pacitor as output. The transfer function is obtained as

TF(s) =
VC(s)

Vi(s)
=

1/Cs

R + 1/Cs
=

1

1 +RCs
=

1

1 + τs
,

where τ ≡ RC. Further, we note the similarity to the transfer function of the
rotational mechanical system consisting of a motor, inertia J and viscous friction
coefficient b that we saw in Lecture 3. [The transfer function was 1/b(1 + τs),
i.e. identical within a multiplicative constant, and the time constant τ was
defined as J/b.] We can use the analogy to establish properties of the RC
system without re—deriving them: e.g., the response to a step input Vi = V0u(t)
(step response) is

VC(t) = V0

³
1− e−t/τ

´
u(t), where now τ = RC.

1

1 +RCs

Block diagram & Transfer Function

Z1 = R
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Interpretation of the RC step response
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V
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V0 = 1 Volt R = 2kΩ C = 1μF

Charging of a capacitor:
becomes progressively more

difficult as charges accumulate.
Capacity (steady-state) is reached
asymptotically (VC→V0 as t→∞)

C
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Example: RLC circuit with voltage source
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Ls R

1

Cs

V (s)
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+ − + −
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Figure 2.3

Figure 2.4

1
V(s) VC(s)LC

s2 +            +
1

LC
R
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s

Figure by MIT OpenCourseWare.
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i (t)
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- -

Figure by MIT OpenCourseWare.
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Example: two-loop network

Images removed due to copyright restrictions.

Please see: Fig. 2.6 and 2.7 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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The operational amplifier (op-amp)
(a) Generally, vo = A (v2 − v1),
where A is the amplifier gain.

(b) When v2 is grounded, as is often
the case in practice, then vo = −Av1.

(Inverting amplifier.)

(c) Often, A is large enough that
we can approximate A→∞.

Rather than connecting the input directly,
the op—amp should then instead be used in the

feedback configuration of Fig. (c).
We have:

V1 = 0; Ia = 0

(because Vo must remain finite) therefore

I1 + I2 = 0;

Vi − V1 = Vi = I1Z1;

Vo − V1 = Vo = I2Z2.

Combining, we obtain

Vo(s) Z
=

Vi(s)
−

2(s)
.

Z1(s)

Figure 2.10
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V1(s) I2(s)

Ia(s)
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Figure by MIT OpenCourseWare.
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