Summary from last week

- Linear systems

- Translational \& rotational mechanical elements \& systems

$$
M \ddot{x}+f_{v} \dot{x}+K x=f
$$

- Solving $1^{\text {st }}$ order linear ODEs with constant coefficients

$$
J \dot{\omega}+b \omega=T_{0} u(t), \omega(0)=\omega_{0} \quad \Rightarrow
$$

$$
\omega(t)=\omega_{0} \mathrm{e}^{-t / \tau}+\frac{T_{0}}{b}\left(1-\mathrm{e}^{-t / \tau}\right)
$$

$$
\omega(\infty)=\frac{T_{0}}{b}
$$

where

$$
\tau \equiv \frac{J}{b} \quad \text { time constant. }
$$

steady state.

Goals for today

- Solving linear constant-coefficient ODEs using Laplace transforms
- Definition of the Laplace transform
- Laplace transforms of commonly used functions
- Laplace transform properties
- Transfer functions
- from ODE to Transfer Function
- Transfer functions of the translational \& rotational mechanical elements that we know
- Next lecture (Wednesday):
- Electrical elements: resistors, capacitors, inductors, amplifiers
- Transfer functions of electrical elements
- Lecture-after-next (Friday):
- DC motor (electro-mechanical element) model and its Transfer Function

Laplace transform: motivation

From ODE (linear, constant coefficients, any order) ...

$$
M \ddot{x}(t)+f_{v} \dot{x}(t)+K x(t)=f(t)
$$

input, output expressed as functions of time t
... to an algebraic equation

$$
M s^{2} X(s)+f_{v} s X(s)+K X(s)=F(s)
$$

input, output expressed as functions of new variable s

Benefits:

- Simplifies solution
- s-domain offers additional insights
- particularly useful in control

Laplace transform: definition

Given a function $f(t)$ in the time domain we define its
Laplace transform $F(s)$ as

$$
F(s)=\int_{0-}^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

We say that $F(s)$ is the frequency-domain representation of $f(t)$.
The frequency variable s is a complex number:

$$
s=\sigma+j \omega
$$

where σ, ω are real numbers with units of frequency (i.e. $\sec ^{-1} \equiv \mathrm{~Hz}$).
We will investigate the physical meaning of σ, ω later when we see examples of Laplace transforms of functions corresponding to physical systems.

Example 1: Laplace transform of the step function

Consider the step function (aka Heaviside function)

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t \geq 0\end{cases}
$$

According to the Laplace transform definition,

$$
\begin{aligned}
U(s) & =\int_{0-}^{+\infty} u(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0-}^{+\infty} 1 \cdot \mathrm{e}^{-s t} \mathrm{~d} t= \\
& =\left.\left(\frac{1}{-s} \mathrm{e}^{-s t}\right)\right|_{0-} ^{+\infty}=\frac{1}{-s}(0-1)= \\
& =\frac{1}{s}
\end{aligned}
$$

Interlude: complex numbers: what does $1 / s$ mean?

Recall that $s=\sigma+j \omega$. The real variables σ, ω (both in frequency units) are the real and imaginary parts, respectively, of s. (We denote $j^{2}=-1$.)

Therefore, we can write

$$
\frac{1}{s}=\frac{1}{\sigma+j \omega}=\frac{\sigma-j \omega}{(\sigma+j \omega)(\sigma-j \omega)}=\frac{\sigma-j \omega}{\sigma^{2}+\omega^{2}}
$$

Alternatively, we can represent the complex number s in polar form $s=|s| \mathrm{e}^{j \phi}$,
where $|s|=\left(\sigma^{2}+\omega^{2}\right)^{1 / 2}$ is the magnitude and $\phi \equiv \angle s=\operatorname{atan}(\omega / \sigma)$ the phase of s.

It is straightforward to derive

$$
\frac{1}{s}=\frac{1}{|s|} \mathrm{e}^{-j \phi} \Rightarrow\left|\frac{1}{s}\right|=\frac{1}{|s|} \quad \text { and } \quad \angle \frac{1}{s}=-\angle s
$$

Example 2: Laplace transform of the exponential

Consider the decaying exponential function beginning at $t=0$

$$
f(t)=\mathrm{e}^{-a t} u(t),
$$

where $a>0$ (note the presence of the step function in the above formula.)
Again we apply the Laplace transform definition,

$$
\begin{aligned}
F(s) & =\int_{0-}^{+\infty} \mathrm{e}^{-a t} u(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{0-}^{+\infty} \mathrm{e}^{-(s+a) t} \mathrm{~d} t= \\
& =\left.\left(\frac{1}{-(s+a)} \mathrm{e}^{-(s+a) t}\right)\right|_{0-} ^{+\infty}=\frac{1}{-(s+a)}(0-1)= \\
& =\frac{1}{s+a} .
\end{aligned}
$$

Laplace transforms of commonly used functions

Laplace transforms of commonly used functions

Laplace transforms of commonly used functions

Sinusoids

Laplace transforms of commonly used functions

Figure by MIT OpenCourseWare.

Impulse function (aka Dirac function)

It represents a pulse of

- infinitessimally small duration; and
- finite energy.

Mathematically, it is defined by the properties

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \delta(t)=1 ; \quad \text { (unit energy) and } \\
& \int_{-\infty}^{+\infty} \delta(t) f(t)=f(0) \quad \text { (sifting.) }
\end{aligned}
$$

Properties of the Laplace transform

Let $F(s), F_{1}(s), F_{2}(s)$ denote the Laplace transforms of $f(t), f_{1}(t), f_{2}(t)$, respectively. We denote $\mathcal{L}[f(t)]=F(s)$, etc.

- Linearity
$\mathcal{L}\left[K_{1} f_{1}(t)+K_{2} f_{2}(t)\right]=K_{1} F_{1}(s)+K_{2} F_{2}(s)$, where K_{1}, K_{2} are complex constants.
- Differentiation
- $\mathcal{L}\left[\frac{\mathrm{d} f(t)}{\mathrm{d} t}\right]=s F(s)-f(0-)$;

The differentiation property is the one that we'll find most useful in solving linear ODEs with constant coeffs.

- $\mathcal{L}\left[\frac{\mathrm{d}^{2} f(t)}{\mathrm{d} t^{2}}\right]=s^{2} F(s)-s f(0-)-\dot{f}(0)$; and
- $\mathcal{L}\left[\frac{\mathrm{d}^{n} f(t)}{\mathrm{d} t^{n}}\right]=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0-)$.
- Integration
$\mathcal{L}\left[\int_{0-}^{t} f(\xi) \mathrm{d} \xi\right]=\frac{F(s)}{s}$.
A more complete set of Laplace transform properties is in Nise Table 2.2.
We'll learn most of these properties in later lectures.

Inverting the Laplace transform

Consider

$$
\begin{equation*}
F(s)=\frac{2}{(s+3)(s+5)} \tag{1}
\end{equation*}
$$

We seek the inverse Laplace transform $f(t)=\mathcal{L}^{-1}[F(s)]$:i.e., a function $f(t)$ such that $\mathcal{L}[f(t)]=F(s)$.

Let us attempt to re-write $F(s)$ as

$$
\begin{equation*}
F(s)=\frac{2}{(s+3)(s+5)}=\frac{K_{1}}{s+3}+\frac{K_{2}}{s+5} . \tag{2}
\end{equation*}
$$

That would be convenient because we know the inverse Laplace transform of the $1 /(s+a)$ function (it's a decaying exponential) and we can also use the linearity theorem to finally find $f(t)$. All that'd be left to do would be to find the coefficients K_{1}, K_{2}.

This is done as follows: first multiply both sides of (2) by $(s+3)$. We find

$$
\frac{2}{s+5}=K_{1}+\frac{K_{2}(s+3)}{s+5} \stackrel{s=-3}{\Longrightarrow} K_{1}=\frac{2}{-3+5}=1 .
$$

Similarly, we find $K_{2}=-1$.

Inverting the Laplace transform

So we have found

$$
F(s)=\frac{2}{(s+3)(s+5)}=\frac{1}{s+3}-\frac{1}{s+5} .
$$

From the table of Laplace transforms (Nise Table 2.1) we know that

$$
\begin{aligned}
\mathcal{L}^{-1}\left[\frac{1}{s+3}\right] & =\mathrm{e}^{-3 t} u(t) \quad \text { and } \\
\mathcal{L}^{-1}\left[\frac{1}{s+5}\right] & =\mathrm{e}^{-5 t} u(t)
\end{aligned}
$$

Using these and the linearity theorem we obtain

$$
\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{2}{(s+3)(s+5)}\right]=\mathcal{L}^{-1}\left[\frac{1}{s+3}-\frac{1}{s+5}\right]=\mathrm{e}^{-3 t}-\mathrm{e}^{-5 t} .
$$

The process we just followed is known as partial fraction expansion.

Use of the Laplace transform to solve ODEs

- Example: motor-shaft system from Lecture 2 (and labs)

$$
\begin{aligned}
& J \dot{\omega}(t)+b \omega(t)=T_{s}(t) \\
& \text { where } T_{s}(t)=T_{0} u(t) \quad \text { (step function) } \\
& \text { and } \omega(t=0)=0 \quad \text { (no spin-down). }
\end{aligned}
$$

Taking the Laplace transform of both sides,

$$
J s \Omega(s)+b \Omega(s)=\frac{T_{0}}{s} \Rightarrow \Omega(s)=\frac{T_{0}}{b} \frac{1}{s((J / b) s+1)}=\frac{T_{0}}{b} \frac{1}{s(\tau s+1)},
$$

where $\tau \equiv J / b$ is the time constant (see also Lecture 2).
We can now apply the partial fraction expansion method to obtain

$$
\Omega(s)=\frac{T_{0}}{b}\left(\frac{K_{1}}{s}+\frac{K_{2}}{\tau s+1}\right)=\frac{T_{0}}{b}\left(\frac{1}{s}-\frac{\tau}{\tau s+1}\right)=\frac{T_{0}}{b}\left(\frac{1}{s}-\frac{1}{s+(1 / \tau)}\right) .
$$

Use of the Laplace transform to solve ODEs

- Example: motor-shaft system from Lecture 2 (and labs)

$$
\begin{aligned}
& J \dot{\omega}(t)+b \omega(t)=T_{s}(t) \\
& \text { where } T_{s}(t)=T_{0} u(t) \quad \text { (step function) } \\
& \text { and } \omega(t=0)=0 \quad \text { (no spin-down). }
\end{aligned}
$$

We have found

$$
\Omega(s)=\frac{T_{0}}{b}\left(\frac{1}{s}-\frac{1}{s+(1 / \tau)}\right) .
$$

Using the linearity property and the table of Laplace transforms we obtain

$$
\omega(t)=\mathcal{L}^{-1}[\Omega(s)]=\frac{T_{0}}{b}\left(1-\mathrm{e}^{-t / \tau}\right),
$$

in agreement with the time-domain solution of Lecture 2.

Transfer Functions

- Consider again the motor-shaft system :

$$
J \dot{\omega}(t)+b \omega(t)=T_{s}(t)
$$

where now $T_{s}(t)$ is an arbitrary function, but still $\omega(t=0)=0 \quad$ (no spin-down).

Proceeding as before, we can write

$$
\Omega(s)=\frac{T_{s}(s)}{J s+b} \Leftrightarrow \frac{\Omega(s)}{T_{s}(s)}=\frac{1}{J s+b} .
$$

Generally, we define the ratio

$$
\frac{\mathcal{L}[\text { output }]}{\mathcal{L}[\text { input }]}=\text { Transfer Function; in this case, } \operatorname{TF}(s)=\frac{1}{J s+b} .
$$

We refer to the $(\mathrm{TF})^{-1}$ of a single element as the Impedance $Z(s)$.

Transfer Functions in block diagrams

Important: To be able to define the Transfer Function, the system ODE must be linear with constant coefficients.

Such systems are known as Linear Time-Invariant, or Linear Autonomous.

Impedances: rotational mechanical

Table removed due to copyright restrictions.

(In the notes, we sometimes use b or B instead of D.)

Impedances: translational mechanical

(In the notes, we sometimes
use b or B instead of f_{v}.)

Transfer Functions: multiple impedances

$$
\text { System ODE: } \quad M \ddot{x}(t)+f_{v} \dot{x}(t)+K x(t)=f(t)
$$

Figures by MIT OpenCourseWare.

$$
\left[\sum \text { Impedances }\right] X(s)=\left[\sum \text { Forces }\right] .
$$

Figures by MIT OpenCourseWare.

Summary

- Laplace transform

$$
\begin{array}{rlrl}
\mathcal{L}[f(t)] \equiv F(s) & =\int_{0-}^{+\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t . & \mathcal{L}[\dot{f}(t)]=s F(s)-f(0-) . \\
\mathcal{L}[u(t)] \equiv U(s)=\frac{1}{s} . & \mathcal{L}\left[\int_{0-}^{t} f(\xi) \mathrm{d} \xi\right]=\frac{F(s)}{s} . \\
\mathcal{L}\left[\mathrm{e}^{-a t}\right]=\frac{1}{s+a} . &
\end{array}
$$

- Transfer functions and impedances

$$
\begin{gathered}
J \ddot{\theta}(t)=T(t) \Rightarrow Z_{J}=J s^{2} ; \quad f_{v} \dot{\theta}(t)=T(t) \Rightarrow Z_{f_{v}}=f_{v} s ; \quad K \theta(t)=T(t) \Rightarrow Z_{K}=K . \\
J \dot{\omega}(t)+b \omega(t)=T_{s}(t) \xlongequal{\mathcal{L}}(J s+b) \Omega(s)=T_{s}(s) \Rightarrow \frac{\Omega(s)}{T_{s}(s)} \equiv \mathrm{TF}(s)=\frac{1}{J s+b} . \\
M \ddot{x}(t)+f_{v} \dot{x}(t)+K x(t)=f(t) \Rightarrow \frac{X(s)}{F(s)} \equiv \mathrm{TF}(s)=\frac{1}{M s^{2}+f_{v} s+K} .
\end{gathered}
$$

