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Overview 

The high-rise building is a modern miracle - miles of steel beams and welds, thousands of 
fasteners allowing graceful structures of one hundred or more stories in height. Like any high-
aspect ratio structure, the skyscraper is flexible. You might not notice this until a strong 
wind-storm sets up large-scale vibrations in the first bending mode. Then the motions will 
make you ill, or at a minimum cause fatigue. The motions certainly cause damage to the 
building, notably in the loss of windows which can crack or fall, and in long-term fatigue 
life reduction. Among potential remedies for building sway, the most common today is the 
passive or active mass concept. In fact, our own Hancock Tower in Boston has two 300-ton 
masses near the top floor, that damp out vibrations caused by wind. 
In these final three lab sessions you will study in detail a physical structure with a similar 
dynamic response, creating a linear model from first principles and using Simulink to charac
terize it, synthesizing an active control system design based on the model, and testing your 
controller on the actual device. The teaching staff will act as consultants. 

•	 Lab 7: Create a simplified model of the open-loop system, using the attached notes and 
data on the physical properties of the plant. You will write this model in state-space 
form, and use Matlab to (numerically) convert it to a transfer function. 

•	 Lab 8: Employing Matlab, design an active damping system built on the PID controller 
you have used for the flywheel plant. You will model your system in Simulink, and 
test out your controller in simulation. 

•	 Lab 9: Test your controller on the real plant; prepare and turn in a report detailing 
your model, the controller design, and your results. Be sure to document the process 
and rationale for your controller design! 
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Supplemental Notes 

1. The Step Response vs. the Impulse Response 

The prototypical input we have used in this class is the step function, u(s) = 1/s or 
u(t) = 1, for all t > 0, and zero otherwise. You should be familiar with the step of 
multiplying in the LaPlace domain the step function with the transfer function, to 
obtain the LaPlace transform of the step response:


G(s)

y(s) = G(s)u(s) = 

s 

where G(s) is the transfer function, and y(s) is the output. The step response is 
meaningful for many controlled systems, for example corresponding to a step change 
in torque in the open loop, or a step change in reference voltage in the closed-loop. 

In the tower labs, we will excite the physical system with an impulse function. The 
impulse, or delta function δ(t) is many things: 

(a) the derivative of the step function, 

(b) an infinitely tall and infinitesimally narrow spike, whose area is exactly one. 

(c) a strong but instantaneous hit to the system, like a hammer or a lightning strike! 

Using the differentiation rule in the LaPlace domain, we have 

L{δ(t)} = 1, 

leading to the observation that a transfer function is its own impulse response! 

2. Suggested State Variables in Your Model 

Your 2.003 and 2.004 experience tells you that the lab structure is a coupled pair of 
masses. The mass of the building itself, assumed to be concentrated at the top, is 
connected to the ground through an effective spring and damper; the ”counterweight” 
is connected to the building mass through a spring and damper. The control is an 
additional force exerted between the two masses, in parallel with the counterweight

spring and damper.


Because the physical system consists of two masses, connected by springs and dampers,

it is of fourth-order - the position and velocity of each mass is needed to completely 
define the state of the system. Using “F = ma”, develop the equations this way: 
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where the derivative of the vector is the same as the vector of derivatives, a(t) is the 
control action (i.e., force from the voice coil), and w(t) is the external input. It is 
important to distinguish these two input gain vectors B and G because the two inputs 
enter the system differently: the actuator force works to separate the two masses, 
whereas the external input pushes on the building from outside. 

3. Obtaining Model Parameters 

(a) The voice coil has similar properties to an electric motor, namely 

force = k × current 

back emf = k × velocity 

For each of the voice coils here, k = 7.1N/A = 7.1V/(m/s). Don’t forget these 
numbers (or the gain of the current amplifier) when you implement your design 
in hardware! 

(b) We weighed the entire upper assembly of the building without the sliding mass 
(m1), and then the sliding mass alone (m1) and found 

m1 = 5.11 kg 

m2 = 0.87 + 0.075n kg, 

where n is the number of additional steel collets placed on the shaft. 

(c) Then we attached the upper assembly without the sliding mass to the aluminum 
struts - this comprises “the building.” An accelerometer was placed to record 
lateral accelerations, and we observed the vibrations of the structure when re
leased from a non-equilibrium condition. These voltages with the time vector are 
recorded in the file 

tower_base_1.m 

which you can run within Matlab in the usual way. Your task is to estimate the 
natural frequency and the damping ratio of this structure, and thereby compute 
k1 and b1. For your reference, the accelerometer has the approximate calibration 
0.0453V/(m/s2). 

(d) Finally, we fixed the building and studied the behavior of the sliding mass, when 
released from a non-equilibrium initial position. We used the voice coil as a 
velocity sensor in this case. The data is found in the file 

actuator_A_0.m 

This particular file has the spring clamp at its furthest extension, and no addi
tional masses affixed to the shaft. As above, your task is to estimate the natural 
frequency and damping ratio of the sliding mass, with the rest of the structure 
fixed. This will give you k2 and b2. 
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Impulse Response of Building via Accelerometer, Trial 1

Figure 1: Accelerometer measurement of building response to non-zero initial conditions, 
with an exponential envelope fitted. The sliding mass is not installed for this test, file 
tower base 1.m. 

(e) For your reference, we have also included the sliding mass data for a number of 
other conditions; the letter in the file name indicates the spring length (A,B,C, 
or D - from longest to shortest), and the number indicates how many steel collets 
were attached to the shaft (0,2, or 4). The A_0 condition will give you good results 
with your active controller. FOR EXTRA CREDIT, explore the possibilities of 
different spring and mass combinations, and discuss how they affect the ability of 
the sliding mass to act as a passive damper. 

Note that a complete analysis of these data shows that for spring positions C and 
D, there is a marked change in b2, suggesting that a nonlinear effect is coming 
into play, perhaps due to side loading of the air bearings because the spring is so 
short. 

4. Some Matlab Hints 

% comment the rest of the line 
help ss ; % show help on the function called ss 
Q = [ 1 2 3 ; 4 5 6 ; 7 8 9] ; % makes a 3x3 matrix Q 
sysSS = ss(A,B,C,D) ; % makes the state-space system defined by the four matrices 
sysTF = tf([0 1],[1 2]) ; % makes the system 1/(s+2) 
impulse(sys) ; % plots the impulse response of the system (both SS and TF forms 
will work) 
[A,B,C,D] = ssdata(sysTF) ; % gives one state-space realization of the transfer 
function representation 
[num,den] = tfdata(sysSS); % gives the (unique) numerator and denominator of 
the state-space system 
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Figure 2: Typical responses of the sliding mass when the building is fixed. The spring 
configuration and number of additional collets is indicated. 

[z,p,k] = zpkdata(sys) ; % reports zeros, poles, and gain of the system 
sysCP = sys1 * sys2 ; % carries out frequency-domain multiplication of systems: 
sys1 operating on the output of sys2 
sysCL = feedback(sys1*sys2,1) ; % creates the closed-loop system with one in the 
feedback path 
rltool(sys) ; % starts up the root locus design tool 
rlocus(sys,kpvec) ; % plots the root locus for the proportional gains in the vector 
kpvec 

5. A Final Word About Your Report 

Your report should be concise and professional. We expect to see good grammar and 
spelling, organization into sections, and clear, annotated figures that support the text. 
We can’t give you the good grade you deserve if we can’t figure out what you did! 
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