MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Mechanical Engineering

2.004 Dynamics and Control II

Fall 2007

Quiz 2 Solution

Posted on Monday, December 3, 2007

1. The root locus of a feedback system with open-loop poles at $-1,-3$ and openloop zeros at $-8,-10$ is shown below. Study the diagram, then answer the following two questions:

1.a) ($\mathbf{1 0 \%}$) Can the response of this system be tuned (approximately) to a settling time of 1 sec with an appropriate choice of feedback gain K ? Justify your answer graphically. If your answer is "yes," there is no need to compute the value of K that would give this settling time.

Answer: Settling time of 1 sec requires

$$
T_{s}=\frac{4}{\zeta \omega_{n}}=1 \Rightarrow \zeta \omega_{n}=4
$$

The given root locus does contain closed-loop poles whose real part equals $-\zeta \omega_{n}=-4$ (see annotated root locus on next page;) therefore, it is possible
to achieve settling time of 1 sec by appropriate choice of feedback gain in the given system.
1.b) $\mathbf{(1 0 \%)}$) Can the response of this system be tuned (approximately) to an overshoot of 4.32% with an appropriate choice of feedback gain K ? Justify your answer graphically. If your answer is "yes," there is no need to compute the value of K that would give this amount of overshoot. Hint: A damping ratio of $\zeta=1 / \sqrt{2}$ would approximately yield the desired overshoot value.

Answer: Damping ratio of $\zeta=1 / \sqrt{2}$ requires that the closed-loop poles subtend angle θ to the origin such that

$$
\cos \theta=\zeta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}
$$

The given root locus does not intersect the line $\theta=45^{\circ}$ (see annotated root locus below;) therefore, there are no closed-loop poles for any value of feedback gain in the given system that yield the desired overshoot.

2. We are given a feedback system whose open-loop transfer function is

$$
\frac{K(s+20)}{(s+2)(s+4)(s+10)},
$$

where K is the feedback gain. In this problem, we will evaluate this system's closed-loop behavior using the root locus technique.
2.a) ($\mathbf{1 5 \%}$) How many asymptotes are there in this system's root locus? What are the asymptote angles?

Answer: This system has $\# p=3$ finite poles and $\# z=1$ finite zero; therefore, it should two open-loop zeros at infinity. The closed-loop poles should approach the open-loop zeros at infinity (as the feedback gain increases to infinity) along $\# p-\# z=2$ asymptotes at angles

$$
\theta_{a}=\frac{(2 m+1) \pi}{3-1}=\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}
$$

2.b) ($\mathbf{1 5 \%}$) Where is the asymptotes' real-axis intercept?

Answer:

$$
\sigma_{a}=\frac{\Sigma p_{k}-\Sigma z_{k}}{\# p-\# z}=\frac{-10-4-2-(-20)}{3-1}=+2
$$

2.c) ($\mathbf{1 5 \%}$) Sketch the root locus based on the information from the previous questions. There is no need to annotate break-in/away points or imaginary axis intercepts, if any.

Answer:

2.d) (10%) If you had to recommend this system to a customer, what would you advise with respect to increasing the feedback gain K indefinitely?

Answer: Since the root locus crosses over to the right-hand half-plane, the system will become unstable for a sufficiently high value of the feedback gain. This is the most important warning one should give to a customer.

In addition, large gain in the stable regime (just before the cross-over to instability) leads to increased overshoot and longer settling time; both of these qualities are generally undesirable.
3. We are given a feedback system with an open-loop pole at the origin (a "free integrator") and another open-loop pole at -1 . In this problem, our objective is to evaluate a proposed proportional-derivative (PD) compensator that would approximately exhibit settling time of 4 sec and overshoot of 16.3%. (Hint: This value of overshoot corresponds to a damping ratio $\zeta=1 / 2$.) The proposed PD compensator cascades an open-loop zero at -4 .
3.a) $\mathbf{(1 5 \%)}$ Use a graphical construction on the s-plane to verify that the proposed PD compensator indeed meets the design requirements.
Answer:

Since $\cos \theta=\zeta=1 / 2 \Rightarrow \theta=60^{\circ}$ from the given overshoot requirement. From the settling time requirement,

$$
T_{s}=\frac{4}{\zeta \omega_{n}}=4 \Rightarrow \zeta \omega_{n}=1
$$

i.e., the real value of the closed-loop pole must be $-\zeta \omega_{n}=-1$. From the two requirements above, we conclude that the closed-loop pole must be located on the point C, marked on the complex plane in the drawing. (Another closed-loop pole, not shown, will be conjugate to C, i.e. with the same real part and opposite-sign imaginary part.) We must now verify that point C belongs to the root locus of the given system.
Generally, a point on the complex plane belongs to the root locus (i.e., it can be a closed-loop pole for an appropriate value of feedback gain) if the angles θ_{z}, θ_{p} that this point subtends to the open-loop zeros and open-loop poles, respectively, satisfy the relationship $\Sigma \theta_{z}-\Sigma \theta_{p}=(2 m+1) \pi$. The given system has two open-loop poles at $s=0$ and $s=-1$ due to the plant, and one open-loop zero at $s=-4$ due to the PD compensator. Therefore,
we must compute the angles subtended by C towards the points Z, P, O on the complex plane. These angles are denoted, respectively, as $\theta_{3}, \theta_{2}, \theta_{1}$ in the diagram, and they are progressively computed as:

$$
\begin{aligned}
& \theta_{1}=180^{\circ}-\theta=180^{\circ}-60^{\circ}=120^{\circ} \\
& \theta_{2}=90^{\circ}, \text { since } C \text { has the same ordinate as } P
\end{aligned}
$$

and, noting that $\omega_{d}=(P O) \tan \theta=\sqrt{3}$,

$$
\tan \theta_{3}=\frac{(P C)}{(Z P)}=\frac{\omega_{d}}{4-1}=\frac{1}{\sqrt{3}} \Rightarrow \theta_{3}=30^{\circ} .
$$

We can now confirm

$$
\theta_{3}-\theta_{2}-\theta_{1}=30^{\circ}-90^{\circ}-120^{\circ}=-180^{\circ} ;
$$

therefore, C belongs to the root locus.
3.b) ($\mathbf{1 0 \%}$) Using the same graphical construction from the previous question, show that the feedback gain required to meet the design requirements in the PD -compensated system is $K=1$.

Answer: For any complex number s that can be a closed-loop pole (in other words, for any complex number that belongs to the root locus), the following relationship must be satisfied:

$$
K \frac{s+4}{s(s+1)}=-1 \Rightarrow K \frac{|s+4|}{|s||s+1|}=1 .
$$

For C in particular, the geometric interpretation of the above relationship is

$$
\frac{K(C Z)}{(O C)(C P)}=1 \Rightarrow K=\frac{(O C)(C P)}{(C Z)}
$$

Using the drawing,

$$
\begin{aligned}
& (C P)=\omega_{d}=\sqrt{3} \\
& (O C)=\sqrt{(O P)^{2}+(P C)^{2}}=\sqrt{1^{2}+(\sqrt{3})^{2}}=2 \\
& (C Z)=\sqrt{(Z P)^{2}+(P C)^{2}}=\sqrt{3^{2}+(\sqrt{3})^{2}}=2 \sqrt{3}
\end{aligned}
$$

Therefore, we confirm

$$
K=\frac{2 \times \sqrt{3}}{2 \sqrt{3}}=1
$$

