
2.004 MODELING DYNAMICS AND CONTROL I I Spring 2002 

Solutions for Problem Set 5 

Problem 1. Particle slides down movable inclined plane. The inclined plane of mass 

M is constrained to move parallel to the X-axis, and the particle of mass m is constrained 

to remain on the sloping surface of the inclined plane. 
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Figure 1: Mass m slides down inclined plane of mass M . 

(a) The imclined plane M is located by the coordinate x, and once the position of the 

inclined plane is �xed the location of the mass partiicle m is determined by giving the 

distance s down the slope. The coordinates x and s constitute a set of complete and 

independent generalized coordinates for the system under consideration. 

(b) To derive the equations of motion for the generalized coordinates x and s we begin 

by studying the motion. The particle m translates in both the X- and Y - directions 

while the inclined plane M translates in just the X-direction. There is no rotation. 

The X- a n d Y -coordinates of the particle m are 

xm 

= x + s cos � and ym 

= �s sin � 

so its velocity coordinates are 

_xm 

= _x + _s cos � and _ym 

= � _s sin � 

The velocity of the inclined plane M is _xM 

= _x. 

Next, to study the forces, we draw separate free-body diagrams of the paricle m and 

the inclined plane M . Since there is no friction, the reaction forces N and N are 1 2 

normal to the surfaces making contact. Note that the force N acting on the inclined 1 

plane M is equal and opposite to the force N acting on the particle m. 1 

1 



Y 

X
O 

θ 

mg 

Mg 

N1 

N2 

N1 

Figure 2: Forces acting on particle m and inclined plane M . 

(b) The equations of motion are obtained by applying the momentum principles to the 

particle m and the inclined plane M . For either a particle or a single rigid body, the 

linear momentum principle requires that the vector sum of the forces acting on the 

object equals the time rate of change of the objects's linear momentum vector. In 

terms of the x- and y-components of the vectors involved 

X dpx 

X dpy
fx 

= and fy 

= 

dt dt


For the particle m, the x- and y-components of linear momentum are


px 

= mx_m 

= m( x_ + _s cos �) and py 

= m _ym 

= �m( s_ sin �) 

and the force components acting on it are 

X X 

fx 

= N sin � and fy 

= N cos � � mg 1 1 

so that the results of applying the linear momentum principle to the particle are the 

two equations 

N sin � = m( x� + s�cos �) (1) 1 

N cos � � mg = �m�s sin � (2) 1 

For the inclined plane M , the constraints do not allow vertical motion, so only the 

horizontal components of the momentum principle need to b e considered. The hori- 

zontal linear momentum is Px 

= Mx_ and the resultant horizontal force on the inclined 

plane is �N sin �. The momentum principle requires 1 

�N sin � = M �x (3) 1 

Two equations of motion for the generalized coordinates x and s are obtained by 

eliminating the reaction force N from these three equations to get two independent 1 

equations. The equation


(M + m) x� + m cos ��s = 0
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is obtained by simply adding Eq.(3) to Eq.(1). An independeent equation is obtained 

by multiplying Eq.(1) by cos �, and multiplying Eq.(2) by � sin �, and then adding 

these two to get 

m�x cos � + m�s = mg sin � 

The last two equations can be written neatly as a matrix equation 

M 

+ 

2 

1 cos � 

3 8 < �x
9 = 

8 < 0 

9 = 6 m 

7 

=4 5 

cos � 1 

: �s ; : g sin � 

; 

Problem 2. Disk rolls on cylindrical surface. The sketch in Fig.3 shows a disk of 

radius r and mass m, which started from the position indicated by the dashed circle and 

then rolled through the angle � to arrive at the position indicated by the solid circle. In 

the original position the center of the disk was at C o n t h e vertical axis OY. After rolling 

through the angle � on the cylindrical surface, the center of the disk is at C0. 
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Figure 3: Disk of radius r rolls on �xed cylindrical surface of radius R. 

Because there is no slip, the length of the arc A0B = r' on the disk, must be the same as 

the length of the path AB = R�  . This implies that 

R 

' = � 

r 

(a) The angular velocity ! of the disk is the rate of turning of a stripe painted on the 

disk with respect to a �xed reference direction. Consider the stripe CA on the disk 

in its original position, indicated by the dashed circle. Afer the disk has rolled to its 

position indicated by the solid circle, the stripe is now in the position C0A0. Originally 
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the stripe was vertical, but now the stripe C0A0 makes the angle '+� with the vertical. 

The angular velocity of the disk is 

d R + r 

! = (' + �) = �_
dt r 

(b) The kinetic energy of a rigid body can be obtained by e v aluating the formula 

1 1 

KE = mv2 + IC 

!2 (1) 

2 

C 2 

where vC 

is the magnitude of the velocity of the mass center C and IC 

is the moment 

of inertia of the rigid body about its mass center. For a uniform solid disk of radius 

1 

r and mass m, IC 

= mr2 . The velocity of the mass center C can b e obtained by 

2 

applying the general formula 

�! 

~vC 

= ~vB 

+ ~!� BC 

which applies to any t wo p o i n ts B and C on the same rigid body which rotates with 

angular velocity ~!. In the present case the p o i n t B on the disk is instantaneously 

�! 

at rest, so ~vB 

= 0, and the length of the vector BC is r, so the vector ~vC 

has the 

magnitude r! and is directed at right angles to BC. Substitution of vC 

= r! and 

1 

2 

mr2 into Eq.(1) yieldsIC 

= 

1 1 1 3 

)2 )2KE = m(r! + ( mr2 )!2 = m(r! 

2 2 2 4 

Problem 3. Rod falls under the inuence of gravity. In Fig.4 the initial position of 

the rod is shown along with an inertial reference frame XOY with its origin O placed at the 

initial contact point of the end B of the rod. 
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Figure 4: R od of m ass m and length L slides on oor as it falls. 
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The rod is completely located by the giving the coordinates xC 

and yC 

of the mass center 

C and the angle � that the rod makes with the vertical. However these coordinates are not 

independent because the constraint that the end B always remains in contact with the oor 

requires that the relation 

L 

yc 

= cos � 

2 

always be satis�ed. 

(a) The constrained system has only two degrees of freedom. One independent set of 

L 

coordinates is xC 

and �, with the dependent variable yc 

= 

2 

cos �. Another set of 

2yC
independent coordinates is xC 

and yC 

, with the dependent variable � = cos�1 . 

L 

The subsequent algebra is somewhat simpler with the �rst choice. 

(b) We study the motion, using the generalized coordinates x and �. From the displace- 

ment com ponents of the mass center C, 

L 

xC 

= x and yC 

= 

2 

cos �; 

the velocity components are obtained by di�erentiation 

L 

x_C 

= _x and _yC 

= � �_ sin � 

2 

The angular velocity of the rod is ! = �_ in the clockwise direction. 

Next, we study the forces by d r a wing a free-body diagram of the rod showing all the 

forces acting on it. See Fig.5. 
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Figure 5: Rod is acted on by gravity force mg and oor reaction N . 
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There are no horizontal forces acting on the rod, so the horizontal momentum is 

conserved. Since the rod is at rest when it is released at t = 0 this means that the 

mass center C does not move horizontally while the rod falls. The equation of motion 

for the generalized coordinate x is 

L � L 

x = sin = ; a constant 

2 6 4 

Application of the linear momentum principle in the vertical direction produces the 

equation 

X d L 

fy 

= N �mg = (m _yC 

) = �m (��sin �+�_2 cos �) or N = m[g� 

L 

(��sin �+�_2 cos �)] 

dt 2 2 

(1) 

and application of the angular momentum principle about the mass center C produces 

the equation 

L2 L2L d 

� = N sin � = 

dHC 

= (m !) = m �� (2) 

2 dt dt 12 12 

Elimination of the reaction force N b e t ween (1) and (2) yields the equation of motion 

for the generalized coordinate � 

L2 g 1 g� �m sin �[ (��sin �+�_2 cos �)] = m
L2 

� or �(1+3 sin2 �)+3�_2 sin � cos � = 6 sin � 

L 

�

2 2 12 L 

(3) 

(c) Immediately after the rod is released from rest the variable � still has its initial value 

�(0) = �= 6 and the angular velocity ! = �_ still has its initial value !(0) = 0. Inserting 

these initial values into (3) yields 

3 g 12 g 

��(0)[1 + ] = 3 or ��(0) = (4) 

4 L 7 L 

(d) The initial value of the oor reaction force N is obtained by substituting the initial 

values �(0) = �= 6, �_(0) = 0 and ��(0) = 

12 g 

into (1) to get 

7 L 

1 12 1 4 

N (0) = mg(1 � ) = mg 

2 7 2 7 
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